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1. Introduction 
In the last few years motion capturing is used more often to create realistic looking animation. One 
example of the use of motion capturing the movie Avatar. In this movie James Cameron used motion 
capturing with real actors (see [1]) for the animation of the aliens and non-human creatures (see [2]).  
Other examples can be found in the gaming industry where animation by using motion capturing 
occurs more and more. The game series of Assassin’s Creed is an excellent example (see [3]). 
The most often used optimization techniques are applied in the area of films, games and computer 
graphics and are, as Komura et al. (2000) mentioned, purely for the “purpose of animation” *4]. 
Optimization techniques interpolate or retarget the motion capturing data to a given model so that 
the model will move according to the movements of the motion capturing. The models of the human 
body used for purpose of animation are “simple multibody without any physiological structure” (see 
[4]). In other words, the anatomical structure of the human body is neglected. 
In the medical field and the field of biomechanics , researchers take motion capturing one step 
further with methods that take the anatomical structure into consideration like Komura et al. (2000) 
used the motion capturing in their research (see [4]). Despite the possibilities of further advancing 
the animation with anatomical structures, the developed techniques in the medical fields and the 
field of biomechanics are not used for the purpose of animation. Instead, the researchers are more 
concerned with trying “to understand the underlying dynamics of the movement of living beings, 
from gait research” [4] and to find and treat patients with for instance gait problems (see [4]) with 
help of motion capturing and animation. 

Komura et al. (2000) mentioned [4] that the anatomical body is important for the characteristics of 
postures and motions, even at relaxed postures.  So the muscles in our bodies have influence on the 
behavior of joints and torques of the models. Introducing anatomical structure to the models could 
improve the realism of the animation that results from the motion capturing. In 1996, Parke et al. 
(1996) already tried to improve the realism of facial animation with the use of taking the muscles 
movements into account (see [10]). At that time, the computer power was too little to implement 
the method designed by them. Nowadays, the power of the computer is greater than years ago. 
Therefore, the next step of the animation would be to take this anatomical structure into account 
just like in the field of biomechanics.  
As the research of Komura et al. (2000) shows, the creation of animation with anatomical structure is 
time consuming. To speed up the creation of the animation based on motion capturing data, a look-
up table would be one possibility, with other words, a database that would contain at least muscle 
activation. Therefore, a first step into the direction of using anatomical structure in the animation for 
the animation community would be the creation of a database of muscle excitation.  

The creation of such a database is described later on in this paper. It consists of two parts. The first 
part is computing the muscle activation from a motion capturing file. This is done in a so called 
pipeline. The pipeline receives a motion captured file (c3d file) as input and follows specific steps to 
construct muscle excitation as output. Some of these steps are not performed in real-time, therefore 
the pipeline will not run in real-time. The second part is the creation of the database itself as a 
module of RAGE. RAGE is a library that consists of many different modules. These modules are used 
for analyzing and working with animation data such as motion capturing. The module is designed to 
perform online and uses steps that are not time consuming like the pipeline. For this reason the aim 
is to get the database run online and as fast as possible. 
This paper starts with the description of these specific steps, followed by the description of the 
pipeline itself. Next, the programming of the RAGE module is described. In the last part of the paper 
some experimenting with the database and the pipeline is described. 
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2. Muscle activation  
Muscle activation is also known as muscle excitation. The calculation of the muscle excitation is 
according to Delp et al. (2007) still a major challenge [9]. One recent technique to calculate it is the 
Computer Muscle Control (CMC), which still costs such an amount of computation time that real-
time processing is still not possible (see [9]). Before the CMC can be calculated, 3 other steps have to 
be performed: Scaling, Inverse Kinematics and Residual Reduction Algorithm. The input needed for 
these steps are: a musculoskeletal model, experimental kinematics and reaction forces and moments 
(see [9]). The experimental kinematics is actually the motion capturing data such as the coordinates 
of the markers. The reaction force and the moments are measured with so called force plates. These 
force plates are placed and used during the motion capturing and calculates the forces and moments 
for every frame in the x-, y- and z-direction (see [6]). The relation between the individual steps can be 
found in figure 1. 
 

 
Figure 1: Relation between the steps ([9], p.1943) 

 

2.1 Scaling  
The first step is scaling of the model so that it matches the “anthropometry of an individual subject” 
([9], p. 1943). In the scaling process mass properties, muscle fiber length and dimension of each body 
segment and other properties of the model are scaled (see [6], p.21). This is done with the distance 
between markers of the motion captured data in relation to the distance between virtual markers of 
the model. A second step in the scaling is the use of inverse kinematics. The inverse kinematics 
“adjust the locations of the virtual markers” ([6], p.21) in such a way that they better matched with 
the location of the markers of the motion captured data. Scaling errors can be reduced this way.  
 

2.2 Inverse Kinematics (IK)  
Inverse Kinematic is a problem that needs to be solved to receive joint angles and translations that fit 
the marker data of the motion capturing best (see [9]). Solving of this problem is done in the second 
step. Furthermore, the IK problem is known as a least-squares problem. It takes the difference 
between the marker location of the motion captured data and the location of virtual markers of the 
model and minimizes this difference, subject to joint constraints” *9+. 
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2.3 Residual Reduction Algorithm (RRA) 
Experimental errors and modeling assumptions cause often dynamically inconsistence between the 
model kinematics received from the second step and the ground reaction forces and moments (see 
[9], p. 1943). The third step, the Residual Reduction Algorithm is an algorithm with which this 
inconsistence will be helped or at least reduced (see [9], p.1943). The algorithm consists of two 
passes (see [6]). The first pass is the altering of the mass “so that excessive leaning in the left-right or 
fore-aft directions is corrected” [6].The second pass consists of altering “the kinematics of the model 
to be more consistent with the ground reaction data” [6]. For this, three residual forces and three 
residual moments are applied to the segments of the model “to control the six degrees of freedom 
between the model” [9] and the world (three rotations and three translations). 
 
 

2.4 Computer Muscle Control (CMC) 
The last of the four steps is the Computer Muscle Control (CMC). The CMC is used to calculate the 
muscle excitations (see [9]) that (as Delp et al mention) “produce a coordinated muscle-driven 
simulation of the subject’s movement”. The set of muscle excitation is computed in such a way, that 
it is able to “produce a coordinated muscle-driven simulation of the subject’s movement” (*9+, p. 
1944).  
To compute the muscle excitation, the CMC uses 5 steps. The first step is the solving of the initial 
state of the model (see [6]). After that, the CMC computes “a set of desired accelerations” (*6+, p. 
22). For this, it makes use of the proportional-derivative (PD) controller (see [6]). Next, the CMC tries 
to minimize the “error between the model coordinates and the inverse kinematic coordinates” (*6+, 
p.22) by applying the following equation: 

                                                                               (see [6]) 
Finally, the CMC computes the activation of the muscles and the muscle actuators with help of the 
static optimization technique. 
The output of the CMC is a file containing the muscle activations, the muscle length and joint angles 
per frame of the motion capturing. 

The whole process is not possible to perform in real-time as mentioned before. For example, Delp et 
al. (2007) mentioned that the CMC “that reproduce measured pedaling dynamics” took 10 minutes 
to compute it (see [9]). 
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3. Pipeline 
The pipeline makes use of the Matlab Toolbox from A. Sandholm [6] and the program OpenSim as 
described below. Because the toolbox is written in Matlab, it was decided to program the pipeline in 
Matlab. 
 

3.1 OpenSim 
OpenSim is a program that enables the user to model, simulate and analyze musculoskeletal systems 
[9]. The first introduction of the program was at the American Society of Biomechanics Conference in 
2007 and was used by thousands of people since then (see [7]).  
OpenSim contains a variety of features including scaling, Inverse Kinematics (IK), Residual Reduction 
Algorithm (RRA) and Computer Muscle Control (CMC).  
The program can be used over its interface which is written in Java (see [7]). First, before working 
with this interface, the user has to check the default properties of it.  
Through the interface, the commands for the Scaling, IK, RRA and CMC can be carried out with hand 
or with configuration files. To be able to use these commands in the pipeline, they need to be 
accessible outside of the interface, which they are. Using them outside the interface requires the use 
of configuration files. Therefore, these files need to be generated before using the OpenSim 
commands. The Matlab toolbox is able of generating these configuration files automatically. 
 

3.2 Matlab Toolbox 
The Matlab Toolbox used in the pipeline was presented by Sandholm et al [6]. The toolbox contains 
features like reading the c3d files, translating data into model coordination system, applying noise 
reduction, creating motion files with a specific format and creating configuration files used in 
OpenSim  ([6], pp.38-39). 
All those features are used in our pipeline. The first time using the Matlab Toolbox, it seemed that 
the function loadLabels was missing and also session_setup as mentioned in [5] p. 40. Therefore, a new 

function loadLabels was created during the process of programming the pipeline as described below. 
Furthermore, the function writeXML had to be changed for the pipeline (see 3.2.2).  
The configuration files make use of additional files containing additional (partly user depended) 
information, for example the configuration file for Scaling uses the additional file Scale_IK_Tasks. 
These additional files need also be created with the Matlab Toolbox. Unfortunately, functions that 
enable the user of the Matlab toolbox to automatically create these additional files are missing 
completely. Therefore, new functions that will be capable of creating the additional files need to be 
implemented.  
 

3.2.1 LoadLabels 

According to the code of the toolbox, the function loadLabels gets a c3dkey as a parameter and returns 
this parameter at the end of it. The code of the toolbox further indicated that the toolbox adds a 

structure named glab to the c3dKey which contains joint names, muscle names, FP suffix and prefix and 
a few other variables/structures. As it was not clear in the coding what exactly those names, prefix, 
suffix and other variables/structures should contain, an older version of the toolbox was used as 
guidance. The older version of the toolbox contains loadLabels, but as a script and not as a function. 
This script contains the following items: 

1a)  Force Plate Naming Convention 
1b)  Coordinate Vector Setup 
1c)  Vicon / OpenSim Offset Marker 
1d) Joint / Muscle Model 
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2a)  Force Plate Labels 
2b)  Force Plate Directions 
2c)  GRF Labels 
2d) CoP Labels 
2e)  GRM Labels (Origin) 
2f)  GRM Labels (CoP) 
3a)  joint labels 
3b)  muscle labels 
4)  EMG labels 
5)  Markerset labels 
 
The toolbox already contains 5 scripts for the joint and muscle labels: loadJointDelp23, loadJointDelp31, 

muscleDelp92, loadMuscleAnderson54 and loadMuscleAnderson54Patella. To make loadLabels more flexible and easy 
to switch names, used joint scripts, used muscle scripts and values, all the items of the script loadLabels 
(except 3a and 3b as the scripts for those already existed) were divided into the scripts 
loadFPLabDependancy, loadFPPlotting, loadEMGLabels and loadMarkerLabels. The function loadLabels then only opens 
all the scripts and assigns everything in the structure glab to the c3dkey. At the moment, the loadLabels 

loads the scripts loadJointDelp23 for the joints and muscleDelp92 for the muscles and can be changed any 
time to other muscle and joints sets as needed. The full code for the function loadLabels and the 
additional scripts can be found in Appendix A. 
 

3.2.2 WriteXML changes 

The writeXML function in the toolbox is the one that creates the configuration files for the Scaling, IK, 
RRA and CMC commands of OpenSim. To be correctly used by the pipeline, a few changes had to be 
made. The first change was the adding of an extra parameter for a filtering frequency. In the 
configuration file for RRA and CMC, a filter frequency is defined. Before the change, writeXML would 
always set the value of the frequency to -1 because it was hard coded to do so. Now, the user can 
define the filter frequency beforehand. 

The next change that was made in the function writeXML was the order of all the lines of the 
configuration files for Scaling, RRA and CMC. This was to make it easier in comparing it to example 
files to see what lines and values were still missing.  
For writing the configuration file for the scaling, the height, age and note were taken out as they 
never change of values and are of no use for the scaling itself. Furthermore, the function for writing 
the scaling configuration file always checks if manual scaling was used or not. As it is planned to 
always use an extra file containing the Scale set, this check was not necessary anymore.  

Another major change made in this function is for the creation of the configuration file for CMC. 
Here, the function always assumed a RRA will be done before the CMC and therefore creates a 
configuration file for the CMC that will use the result of the RRA. It could happen that the RRA was 
not necessary in which case the CMC configuration file has to use the IK data’s instead of the RRA. 
Therefore, the major change here is a check whether or not RRA had been done before. If RRA had 
been done, nothing changes. If not, the CMC configuration file uses now the IK data’s instead of the 
RRA. 
 

3.2.3 Additional Functions 

The configuration file for the scaling, IK, RRA and CMC created by the toolbox all need extra files to 
run correctly in OpenSim. The configuration file for the Scaling needs 3 different extra files, the 
configuration file for the IK needs only 1 extra file, the configuration file for the RRA and the 
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configuration file for the CMC need 3 extra files. This makes in total 10 extra files needed for the 
whole process. 
The Matlab Toolbox has no function that is able to create these files automatically. This is why extra 
functions are necessary that are able to create these files automatically. As most of the content of 
the 10 files are different, 10 different functions were added to the toolbox, one for every file. These 

functions are: writecmcActuators, writecmcconstrain, writeCMCTask, writeIKTask, writerraactuators, writerraconstrain, 
writeRRATask, writeScaleMeasuremenSet, writeScaleSet and writeScaletask. 
The content of all these files can be split into two categories: user depended content and non- 
changeable content. The non-changeable content stays the same with every motion. Therefore, it 
was decided to hard code it into the functions. The user depended content on the other hand is 
different. This content can be different from motion to motion and the number of it can also vary. 
Furthermore, it is not possible to predict the content beforehand. This means that the user has the 
responsibility to give the functions these contents. This user depended content has therefore to be 
placed into xml file which all the functions will read out and pick their part for their files from. 
So, the 10 functions work all the same: first open the file which contains the user depended content, 
search for the part needed in that function, creating an xml file with the user depended content and 
the hard coded content. 

Additional to the extra files, the configuration files require a trc-file of the motion. A trc-file is a file 
that contains the time and the coordinates (x,y and z coordinates) of every marker for every frame in 
a specific format. It is possible to create this trc-file beforehand with a program called Mokka. This 
program is able to save the c3d information in a trc-file. Nevertheless, the aim is that the pipeline will 
do every step automatically on its own and this includes also the creation of the trc-file. 
Unfortunately, the command to save the c3d file as a trc-file from the program Mokka is not 
accessible from the command line. This also means that the pipeline cannot access it. Because all the 
information needed is already accessible thanks to the Matlab Toolbox, the best way to get a trc-file 
is a new function that saves one itself with all the information it gets from the Matlab Toolbox. The 

function for this is called generateTRCFile. This function takes the c3dKey as a parameter which is created 
with the Matlab Toolbox beforehand. It then takes all the information needed for a trc file out of the 

c3dKey and prints it in a new created trc-file according to the specific format of the trc-file. 

With those additional functions, the Matlab Toolbox is complete for the pipeline and creates 
everything needed for the pipeline to run smoothly. 
 

3.3 Setup for the pipeline 
Before the user can run the pipeline, he/she has to set everything up in the way the pipeline will 
expect it.  

First of all, the input of the pipeline will be c3d files. The amount of c3d files can be different every 
time the pipeline will be run. So that the pipeline will know the number of motions and the name of 
each one of them, the user has to fill specific information into a file called motions. The file motions 
was first a txt-file where only the names of all motions had to be written in. During the first design of 
the database, it became clearer that additional information for every motion for the database was 
required, such as the sort of motion.  
Therefore, the file was changed to an xml file. The file motions.xml contains one section called 
motions. This section contains as many subsections as there are motions for the pipeline with the 
name mot. Every mot section has exactly 4 subsections: name, group, subgroup and person. The 
section name contains the name of the motion, whereby the section person contains the name of the 
person who performed the motion. As the design of the database also requires the knowledge of the 
sort of motion that is performed, the section group was added that will contain this information.  
Furthermore, some motions can have additional information such as degree of the feet position 
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during a motion of the sort crouch. This extra information can be written in the section subgroup. It 
is however possible that for some motions no information (that could be fit into for example the 
subgroup) exists or the user does not want to specify this. In that case it was first tried to leave that 

section empty. The Matlab xml parser then automatically filled in the information of the previous 
section. Therefore, it was decided that the user needs to fill that section with a dot instead. 
So, the file motions.xml should for example for two motions look like this: 

<motions> 

 <mot> 

  <name>Gait_0004_label</name> 
  <group>gait</group> 

  <subgroup>.</subgroup> 

  <person>Tobias</person> 

 </mot> 

 <mot> 
  <name>Gait_0007_label</name> 

  <group>gait</group> 

  <subgroup>Testsubgroup</subgroup> 

  <person>Matthijs</person> 

 </mot> 

</motions> 

 
Next to this file, the user has to create a folder named Common. This folder should contain all model 
files that will be used in the scaling and all the reference files for all the motions. What happens with 
these files will be explained in chapter 3.4. 

The next preparation the user has to make before starting the pipeline is creating folders for every 
c3d file with the same name as the c3d file next to the folder Common. In those folders, the user 
needs to place the c3d files and an xml file called setup. You can find an example of the resulting file 
hierarchy in figure x. 
 

 
Figure 2a: Folder Hierarchy 

 
 
The file setup.xml contains 4 sections next to the head section: Scale, IK, RRA and CMC.  
In the other four sections, the user can first specify if the pipeline should run the OpenSim 
commands with the same names under the section use. If the user decides to not use one of these 
commands, he/she has to make sure that the folder contains a file of the same sort and name as the 
one this command would produce, otherwise the pipeline will fail. 
In the section scaling, the user needs to specify the name of the reference file in the section 
motionFile and the model that is scaled according to the reference file in the section model. Next to 
these sections, the user also needs to specify ScaleTasks with name and weight. These ScaleTasks are 
the user depended content of the IK Task that the configuration file for the scaling needs (see 3.2.3). 
In the section IK, the user only needs to specify IKTasks with name and weight for the additional Task 
of the IK configuration file. 

Figure 2b: Content of 
main folder Pipeline-
Gait 

Figure 2c: Content of one motion 
folder (Gait_0004_label) 

Figure 2d: Content of the folder Common 
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Section RRA needs to be filled with the subsection filter_frequency containing the filtering frequency 
for the configuration file and subsections Actuators with name and optimal force, which are needed 
to create the Actuator file for the RRA configuration file. The number of subsection Actuators 
depends on the user itself. Next to these sections, the section RRA also contains a section called 
Task. In this section the user needs to specify joints with name, kp, kv and weight of it. This user 
specified information will be used for the generation of the Task file for the RRA configuration file. 

The sections CMC contains the same subsections as the section RRA with the difference that the 
sections joint only contain name, kp and kv. It is possible that the user fills the subsections with 
exactly the same values as the subsections of the section RRA. Because it is possible that the user will 
use different values in the CMC than in the RRA, it was decided to use two different sections for the 
CMC and for the RRA. An example of this configuration file for the motion Gait_004_label can be 
found in Appendix B. 
 

3.4 Walking through the pipeline 
The pipeline starts with reading in the file motions.xml. The pipeline takes the name of the first 
motion and enters the folder of the same name. In that folder, it will open the setup.xml file. The first 
section of this file is Scaling. If the user specified the use of it as true, the pipeline will look into the 
folder Common if a folder exists with the same name as specified in section motionFile. If the folder 
exists, the pipeline will just copy the scaled model out of this folder into the motion folder and is 
done with the scaling. If the folder does not exist, the pipeline will create it, copy the reference 
motion file and the model file into it, create the configuration file for the scaling and all the needed 
extra files and use the scaling command of OpenSim to scale the model with the reference file. The 
resulting scaled model is then copied to the motion folder. 
Next in the configuration file is the IK. If this is set on true, the pipeline will create the IK 
configuration file and the additional files that the configuration file requires. After creating these 
files, the pipeline will run the IK command of OpenSim. 
If the user specified the use of the RRA as true, the pipeline will then create the configuration file for 
OpenSim and the additional needed files. After that, the pipeline will run the RRA with OpenSim. For 
the RRA, OpenSim does not have a separate command. Instead, the command cmc.exe is used with 
the RRA configuration file. The content of the RRA configuration file makes sure that a RRA is then 
performed instead of a CMC. 
CMC is now the next section. The pipeline will again make sure if the user stated the use of it as true. 
If not, it will just skip it. If it is stated as true, the pipeline will create the configuration file for the 
CMC. For this, it has to check whether or not the user used the RRA. When the RRA was not used, the 
configuration file will only make use of the results from the IK. Otherwise, it will make use of results 
of the RRA. Furthermore, the additional files are created and the pipeline runs at the end the CMC 
command with OpenSim. 
The result of the CMC is a file containing the muscle activation of the (first) motion. This file is the 
result of the pipeline for the motion and is therefore the output of the pipeline. Now, the pipeline 
could go further with the next motion in the motions.xml file, but before it does so, the pipeline 
needs to do something else: combining the data of different files into one for the database. Most of 
the data the pipeline needs to put into the file for the database are already loaded into it: the four 
sections (group, subgroup, person and name of the motion) from the motions.xml file and data from 
the model. The only data that the pipeline additional needs for the file for the database are the 
muscle activations from the results of the CMC. To read the file that contains the muscle activation, a 
new function was created: readCMC. It reads the whole file that contains the muscle activation, 
calculates the minimum and maximum value of each joint angle and muscle activation and gives it to 
the pipeline. The pipeline saves the data of a motion in an xml file called databaseQuery under a new 
section called mot.  
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The pipeline is now finished with processing of a motion of the file motions.xml. It repeats these steps 
for every other motion in the file. After the last motion was processed, the pipeline will print on the 
command line that it is finished. 

The whole pipeline was programmed in two files. The first file is called pipeline and is a Matlab script. 
This script reads the motions.xml file, the scaling and the preparations for the pipeline. The second 
file, runPipeline, is a function. It gets information from the first script and does all the other steps: IK, 
RRA and CMC. 
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4. Rage Module 
The library RAGE, RAGE stands for "Real-time AGS Game Engine” *8+, consists of many different 
modules. The modules are for analyzing and working with motion capturing, animation platform and 
others.  It is possible to extend the program with new modules. The languages used for the program 
are C++ and Python. C++ is used for the calculations and process running (in the background) such as 
calculating physics for example. Python is used for the interface and communication with the graphic 
engine Ogre and RAGE library.  
 

4.1 The database design 
The muscle activation database is programmed as a new module for RAGE.  The module should 
enable the user to search for motions in the database and that (another) module is then opened with 
the results of this search. 
The first question for this is: On what should the user be able to search? All the results from the 
scaling can be used as parameters and search criteria’s. The same goes for the results of the IK, RRA 
and CMC. Also, additional information received from the user can also be integrated into the 
database and used as search parameters. To use all of these parameters/information as search 
parameters would be a lot to program and also would give the user too many choices. Therefore, it is 
decided to limit it to the results of the CMC (to be more precise: the joint angles and the muscle 
activation), body sets of the models from the scaling and the additional data from the user. It is 
possible to change these later to other search criteria. 
The next question that needs to be answered is: How should the user chose criteria? The first 
thought was to put the possible values of the search criteria in multi-selectable lists. This would 
mean that the user would have many lists with values out of which he/she could choose one or more 
values. In the case of this database, the user would have 11 different lists to choose from: Names, 

Scaled models, Groups, Subgroups, Persons, Duration of the CMC, Bodysets, Mass, Center of Mass, 

CMC joints and CMC muscles. 

 
The lists for the mass of the body set, for the muscle activation and for the joint angle would only 
contain numbers. The number of values in these lists can be very large and the difference between 
the numbers in the lists can be very small. Therefore, it can become hard for the user to use the lists 
with these numbers and could also become time consuming with searching for all these different 
values. A better solution for these search criteria’s is to let the user enter minimum and maximum 
values. The database then has to search the motions where the values of the mass, joint angles 
and/or muscle activation lies between the given minimum and maximum. 
So far, the design of the database shows how the user can search through the motions and on what 
data the database is able to look for. The only question that remains now is: How to load in the 
database? It is possible that the user used the pipeline for more than one run in different folders, but 
wants to combine these motions now in the database. Furthermore, the pipeline is already 
programmed in such a way, that it also produces a xml file containing all information the database 
needs as mentioned before. Therefore, the decision is to let the user browse to those xml files and 
read in the information contained in these files and build the database based on them.  As users are, 
he/she might make a mistake, for example load accidentally in more than he/she actually wanted. To 
help solve this mistake, the database will have an additional button: clear. With this button, the user 
can unload the whole database and restart with the loading of it. 
 

4.2 Programming the Interface of the Database 
The interface of the database is programmed in Python and can be found in the script 
muscleDatabasetest.py. This script contains two classes: databaseGUI and resultGUI. 
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4.2.1 Class databaseGUI 

The class databaseGUI is the class that is called upon from the main part of the script. First, it creates a 
new module. This module contains a file browser and two buttons next to it (Create Database button 
and a Clear button), 8 empty lists and 8 text fields where the user can enter minimum and maximum 
values. Another button called Search motions is under these lists and text fields. You can see the 
entire interface layout in figure 3.  
 

 
Figure 3: Interface of the Database query 

 
The file browser from the wx.lib needs a function that is called as soon as one file is chosen. Because 
the user could chose a wrong file, the function for this, ApplyMapFile, is a dummy function that just 
prints the name of the chosen file. 

The button Create Database makes use of the function CreateDatabase as soon as it is selected. 
CreateDatabase is a function that reads every motion from the file the user chooses with the file 

browser and uses the functions givenMotionData, handleModelData and handleCMC to fill the list and handing 
down the information to the C++ part.  
The function givenMotionData reads the group, subgroup, motion name, model name and person names, 
fills different lists with these values and hands the information down to the C++ part. 
The function handleModelData is responsible to read in for the body set data’s, fills lists with it and hands 
the data down to the C++ part. handleCMC does the same with the CMC related part of the xml file. 
So after pressing the button Create Database, the lists will be filled (see figure 4). 
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Figure 4: Database filled with data 

 

The button Clear has the opposite effect. It will clear all the lists with the function ClearDatabase. Next 
to clearing all the lists the user can see, it also hands down the command of clearing everything to 
the C++ part. 
Search motions is bound to the function SearchMot, this function calls functions for every list and text 
field to get the user input of it and hands it down to the C++ part. Finally, it calls the function getResult. 
This function calls the search function of the C++ part, saves the result in the global variable results 
and creates a new instance of the class resultGUI. 
 

4.2.2 Class resultGUI 

The class resultGUI is actually a simple one. It is creating a new module in the existing interface and fills 
the module with all motion names found in the global results (see figure 5).  



Page | 14  
 

 
Figure 5: Tab with the result of the search 

 

4.3 Programming the main part of the database 
The main part of the database cannot be found in the interface but in the part that runs in the 
background, the C++ part. This is the part that actually keeps track of the every motion with all its 
information in the database. The whole C++ code consists of 4 Objects/classes: Body, Model, MotionInf and 

SearchEngine. 
 

4.3.1 Class Body 

The class Body is meant to keep track of all the values of the body sets. Therefore, it has variables for 
the mass, the inertia, the center of mass and the name of the body set. Other classes can get these 
variables with the different get-functions of this class. 
 

4.3.2 Class Model 

Because a model can have more than one body set, this class was designed to create one object for 
every model with a name and all its body sets. The body sets can be added with the set function and 
retrieved with the get function. Because there can be more than one body, the get function needs 
the name of the body set to retrieve the right one as a parameter. The name is set as soon as the 
constructor is called. Therefore, it has no set function, only a get function to retrieve the name. 
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4.3.3  Class MotionInf 

MotionInf contains all the information belonging to one motion. This includes one object of the model 
belonging to the motion, the name of the motion, the group and subgroup it belongs to, the person 
performing the motion, the duration of the CMC and two containers, to be more specific maps. A 
map is container from the standard library in C++ that stores the elements formed by a combination 
of keys and mapped values. One contains the minimum and maximum value of the joint angles map 
with the joint names, and one contains the minimum and maximum values of the muscle activation 
mapped with the muscle name as key. All the variables are set in the constructor (except the two 
maps) and have therefore no set function. The class does however contain a get function to retrieve 
the values in the variables. For the two maps, there exist set functions. These functions get the 
names, the minimum value and the maximum value and insert it into the maps. The get functions for 
these maps retrieve of the minimum and maximum values of the map according to the name (the 
mapping key) given in the parameter. 
 

4.3.4 Class SearchEngine 

The class SearchEngine is actually the main class. It creates the MotionInf and Model objects if they don’t 
exist yet, maps them with their names as keys and keeps this way track of them. The objects of the 
models are mapped extra with their name as key despite the fact that they are already mapped in 

MotionInf. The reason for this is that more than one motion can contain the same model. If a new 
motion is now inserted into the SearchEngine with a model that already exist in the database, the object 
of the model can easily be found in the map and linked to the motion. Having two objects containing 
the exact same information would be a waste of space. 
Beside these maps, the class has also 9 vectors. These vectors are filled with all the search 
parameters, which the user selected in the interface, with set functions. The function clearSearch 
empties these vectors. The vectors containing the search parameters have to be emptied after every 
search. If the user clicks the button Clear in the interface, the whole database here has to be cleared. 

This is what the function clearDatabase does: it empties the two maps which in fact are the whole 
database. 
The most important function in this class is the searchMotions function. This function goes through the 
map of motions. For every motion, the function looks at the information of the motion starting with 
the name and compares it with the values in the search vector that belongs to that information. For 
example looking at the name of the motion and comparing it with the values of the vector searchName. 
If one of the values in the vector is the same or the vector is empty and this is the same for every 
other search vectors, the name of the motion is added to a resulting vector. This resulting vector is 
returned at the end of the function. 

5. Experiments 
The design of the database is a first setup and can be changed later as wished. During the design of 
the database and the pipeline, there was for some points more than one option in how to 
program/build it. For these points and to see if the goal of a database works as fast as possible and in 
real-time, experiments were conducted to see what the best solution would be. 
 

5.1 Objects vs. mapping 
The first idea during the designing of the database was to use mappings instead of objects. For every 
kind of information, one map would be used that maps strings of the information to a vector 
containing motion names that have these information, for example a map for the groups in which 
the string Gait maps to a vector containing the names Gait_0004 and Gait_0007. Other information 
part that would contain extra information, for example body sets containing mass, center of mass 
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and inertias of the body set, would not map a vector to string, but instead a structure. The structure 
would then contain the extra information and a vector with the motions belonging to that 
information. A mapping of the body sets would then map a structure to the name of the body and 
the structure would contain the mass, center of mass and inertia next to the vector of motions, as 
example. 

The database would now need n such maps. These n maps contain m keys with vectors and the 
vectors contain k values. The search for motions in the worst case scenario (with l search criteria’s for 
every information) would then need a time of O((n*m*l)+(s*k)) where s is the number of vectors that 
match the search criteria’s. 
 
Another idea was to use objects instead of mapping. An object of the motion would then contain m 
information. In a search (with l search criteria’s for every information) through n motions would in 
the worst case scenario need a time of O(n*m*l). This is slightly better. Furthermore, this approach is 
more object orientated than the approach with the mapping and will therefore result in better 
maintenance possibilities and extending possibilities future. Because of that, objects are used instead 
of mapping in the database.  

 

Table 1: Worst case calculations 

Number 
of 

motions 

Number of 
different 
kind of 

information 

Number of 
different values 

for the 
informations 

Number of 
different search 

criteria’s for 
every 

information 

Number of 
found 

Vectors 

Length 
of 

vectors 
O((n*m*l)+(s

*k)) O(n*m*l). 

10 20 
10 

10 10 1 
O((20*10*10)

+(10*1)) = 
O(2010) 

O(10*20*10
) =O(2000) 

20 20 
20 

20 20 1 
O((20*20*20)

+(20*1)) = 
O(8020) 

O(20*20*20
) =O(8000) 

20 20 
20 

10 10 1 
O((20*20*10)

+(10*1)) = 
O(4010) 

O(20*20*10
) =O(4000) 

30 20 
30 

30 30 1 
O((20*30*30)

+(30*1)) = 
O(18030) 

O(30*20*30
) =O(18000) 

30 20 
30 

10 10 1 
O((20*30*10)

+(10*1)) = 
O(6010) 

O(30*20*10
) =O(6000) 

50 20 
50 

50 50 1 
O((20*50*50)

+(50*1)) = 
O(50050) 

O(50*20*50
) =O(50000) 

50 20 
50 

10 10 1 
O((20*50*10)

+(10*1)) = 
O(10010) 

O(50*20*10
) =O(10000) 

100 20 
100 

100 100 1 
O((20*100*11
00)+(100*1)) 
= O(200100) 

O(100*20*1
00) 

=O(200000) 
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5.2 Reading CMC vs. Min and Max 
As was described in the design of the database, the user can search with minimum and maximum 
values muscles activations and/or joint angles. For this search, two different ways were thought 
about. 
The first way is that the pipeline calculates the minimum and maximum values beforehand and that 
the database only needs to look up if the minimum value given by the user falls between the 
minimum and maximum value of the calculated one. 
The other ways of implement the search was that the database itself has to look into the CMC file 
and that the pipeline gives only the directory in which the file can be found. 

To be able to compare these two ways, both were implemented and run. Let’s first look at the 
pipeline by letting it run twice with two motions. The first run is without calculating the minimum 
and maximum values of the joint angles and muscle activity and the second is run with these 
calculations. In the setup of the two motions the IK is defined as not to use and for one motion is 
even all the scaling, RRA and CMC set to not be used. 
The first run of the pipeline took 9 minutes and 15 second until it was finished. The second run on 
the other hand took even longer until it was finished: 11 minutes 57 seconds. So the second run took 
2 minutes 42 minutes longer than the first run. Because the files the pipeline opens and uses to 
calculate the minimum and maximum are the same size of both motions, the time it takes should be 
equal for both motions. This means that reading the file and calculating the minimum and maximum 
for every joint angle and muscle activation takes for every motion 1 minute 21 seconds. Because 
both motions have 185 frames, this would be 0.478 seconds per frame. 

The run of the pipeline with and without calculation of the min and max values was also done once 
with three motions and once with six motions. In all the motions are the use of the Scaling, IK, RRA 
and CMC set to false. These were calculated beforehand with the pipeline because only the time it 
needed for the calculation of the min and max values are of interest here. You can find the total time 
the pipeline needed to and the calculated time difference between the run with the calculation of 
the minimum and maximum values and without in table 2. 

Table 2: Time the pipeline took to run with different amount of motions and the calculated difference between running 
with and without calculating min and max values 

Number of 
motions 

With calculation 
of min and max 

values? 
Total Time of 
the pipeline 

 

Time difference 

Time 
difference 
per motion 

Time 
difference 
per frame 

2 No 9 min 15 sec 
2 min 42 sec 1 min 21 sec 0.478 sec 

2 Yes 11 min 57 sec 

3 No 6 min 36 sec 
3 min 23 sec 1 min 7.7 sec 0.367 sec 

3 Yes 9 min 59 sec 

6 No 13 min 01 sec 
7 min 00 sec 1 min 10 sec 0.378 sec 

6 Yes 20 min 01 sec 
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Now, let’s look at the database. First, the database was loaded in twice: once with the minimum and 

maximum values and once without the minimum and maximum values. Both loading processes 

seemed not to make any time difference. It is possible that with an amount of hundred of motions 

that the difference between these loading processes would be measurable, but it probably would 

make only a slightly difference. 

When the minimum and maximum values are not loaded in, the database still needs to be able to 
search through the values of the joint angles and/or muscle activation to see if it contains values that 
are between the maximum and minimum value of the user. For this, another function was 
implemented: readCMCFile. This function reads a CMC file in and scans through the lines. For every 
line, it looks for the i-th column. The number (i), for the number of the column, has to be given to the 
function through the parameter. For now, this function is only a test function and reads one hard 
coded file and can later be changed to a variable file-address. Another button (Test reading File) was 
added to the interface that would call this function with the number 3 (see figure 6).  

 
Figure 6: the new test button in the RAGE module 

 

Because the first time clicking on this button it was not clear when the function finished reading 
through the file, a breakpoint was placed at the end of the new implemented function. Now clicking 
on the button until the break point was reached took between 3 and 4 seconds. Just like the motions 
in the pipeline, consist the file the database reads of 185 frames. This means that the database takes 
between 0.016 seconds and 0.022 seconds for the reading of one frame. On the other hand, clicking 
on the search button (which still uses the calculated minimum and maximum values of the joint 
angles and muscle activity as described in chapter 4.3) finished in less than 1 second. The difference 
between 3 and 1 second does not seem much, but the test was only conducted with one motion. 
Searching through files for 100 motions would then take approximately 300 seconds, while on the 
other hand searching with the calculated minimum and maximum values for 100 motions would take 
approximately 100 seconds or even less. 

The experiments with the pipeline and the database show that the pipeline will consume more time 
for calculating the minimum and maximum values than it actually saves for the database search. The 
time, the pipeline needs to calculate the min and max values, is (as the experiments show in table 2) 
almost totally proportional. Proportionally does every frame of all the motions consume a time of 
approximately 0.478 seconds for the computation of the min and max values. In comparison to the 
time the database needs to read the one frame of the CMC file by itself is it a lot of time. On the 
other hand, the pipeline already needs a lot of time to perform the steps necessary for the 
calculation of the muscle activation as you can see in table 2. The database only takes one or even 
less than one second to start up and is able to run online. 
Furthermore, reading the CMC file in the database gives the opportunity to even look at the values at 
every frame. This would make it possible to search for frames in the CMC that are for example 
between a specific minimum and maximum and return those frames next to the name of the motion 
as result of the search. 
Because the aim is to make the database as fast as possible, it was chosen to calculate the minimum 
and maximum values and use them in the database search despite the longer time it takes in the 
pipeline. Furthermore, it is enough for now to only return the name of the motions that fit the search 
criteria instead of including the frame numbers in the result. It is possible to change this if it is 
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required because the function that reads the file already exists. The only changes that have to be 
made is making the reading more flexible (for example by letting the pipeline give the folder and file 
name) and take the part of calculating the min and max values in the pipeline out of it. Next to this, 
the returned and in the new tab printed result has also be changed to giving and printing the found 
frame numbers. 
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6. Conclusion 
In this paper, the design, implementation and experimenting of a muscle activation database was 
described. This muscle activation database tries to make a step of the motion capturing for 
animation purpose in the direction of taking the anatomical structure into consideration as it is 
already done in the field of Biomechanics. The next steps would be to use this database to further 
Nevertheless, the time the database will need will rise with more motions in the database which can 
result in the inability to run online. Because the aim was that the database will run online and as fast 
as possible, it was decided to let the pipeline calculate the min and max values of the muscle 
activations and joint angles. 
The search criteria’s and input of these can still be changed if wished. If other search criteria’s or 

other way of searching is chosen, it is recommended to test if the database will still run with these 

changes in real-time as this is the aim of the database. 
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Appendix A 
 

Function loadLabels: 

function C3Dkey = loadLabels(C3Dkey) 

loadFPLabDependancy; 
loadFPPlotting; 

loadJointDelp23; 

muscleDelp92; 

loadEMGLabels; 

loadMarkerLabels; 
glab.modelJointData = glab.jointDelp23;          % Joint convension 

glab.muscleModel = glab.muscleDelp92;         % Muscle convension 

C3Dkey.glab = glab; 

 

 

Script loadFPLabDependancy: 

 
% ================================= 

% LAB DEPENDANCY 

% ================================= 

% 1a) Force Plate Naming Convention 

% --------------------------------------------------------------------- 
% Force plate numbers MUST be set up within the lab. 

% The names of the channels of these force plates are defined here. 

%       EXAMPLE 

%       glab.FP.string = '%s%d%s'; 

%       glab.FP.prefix  = {'FP','FP','FP','FP','FP','FP'}; 

%       glab.FP.suffix  = {'Fx','Fy','Fz','Mx','My','Mz'}; 
%        

%       Moment about FP #3 in the X direction analog channel = 'FP3Mx' 

%       Please note that the glab.FP.string IS CASE SENSITIVE 

% --------------------------------------------------------------------- 

glab.FP.string = '%s%d%s';      % Prefix, PlateNum, Suffix 
glab.FP.prefix  = {'FP','FP','FP','FP','FP','FP'}; 

glab.FP.suffix  = {'Fx','Fy','Fz','Mx','My','Mz'}; 

glab.FP.verticalForceIndex = 3; 

 

% 1b) Coordinate Vector Setup 
% --------------------------------------------------------------------- 

% This section sets transformation vectors that are crucial to the 

% rigid body transformations needed between the Force Plate, Vicon, 

% and the Model coordinate systems. 

%  
% Example: FP coord system -> Model coord system 

%          glab.dirVec.FPMODEL(3,:)  = [2 -3 -1];    

%  

%          MODEL X = FP Y 

%          MODEL Y = FP -Z 
%          MODEL Z = FP -X 

% --------------------------------------------------------------------- 

% X direction (Vicon) Gait -> transformation vectors 

glab.dirVec.FPMODEL(1,:)  = [-1 -3 -2];   % FP coord system    -> Model coord system 

glab.dirVec.VICMODEL(1,:) = [1 3 -2];     % Vicon coord system -> Model coord system 
 

% -X direction (Vicon) Gait -> transformation vectors 

glab.dirVec.FPMODEL(2,:)  = [1 -3 2];   % FP coord system    -> Model coord system 

glab.dirVec.VICMODEL(2,:) = [-1 3 2];   % Vicon coord system -> Model coord system 

 
% Y direction (Vicon) Gait -> transformation vectors 
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glab.dirVec.FPMODEL(3,:)  = [2 -3 -1];   % FP coord system    -> Model coord system 

glab.dirVec.VICMODEL(3,:) = [2 3 1];     % Vicon coord system -> Model coord system 

 

% -Y direction (Vicon) Gait -> transformation vectors 

glab.dirVec.FPMODEL(4,:)  = [2 -3 -1];   % FP coord system    -> Model coord system 
glab.dirVec.VICMODEL(4,:) = [-2 3 -1];   % Vicon coord system -> Model coord system 

 

 

% 1c) Vicon / OpenSim Offset Marker 

% --------------------------------------------------------------------- 
% This section sets marker to be used as the offset point to 

% line up the model to the walking platform in OpenSim 

% --------------------------------------------------------------------- 

glab.offsetMarker = 'SCM'; 

 

 

Script loadFPPlotting: 

% ================================= 

% FORCE PLATE PLOTTING 

% (Used by getKinetics.m) 

% ================================= 

 
% 2a) Force Plate Labels 

% --------------------------------------------------------------------- 

glab.name{1} = 'GRF'; 

glab.name{2} = 'CoP'; 

glab.name{3} = 'GRMo'; 
glab.name{4} = 'GRMx'; 

 

% Force Plate Directions 

% (x dir+-, y dir+-, z dir+-) 

% --------------------------------------------------------------------- 
glab.dir{1} = {'Fore',     'Aft'};              % X 

glab.dir{2} = {'Vertical', ''};                 % Y 

glab.dir{3} = {'Lateral',  'Medial'};           % Z 

 

% GRF Labels 
% (label, units, directionSign+, directionSign-) 

% --------------------------------------------------------------------- 

glab.S{1} = [{'GRF X (right)', 'N'}, glab.dir{1}(1), glab.dir{1}(2)]; 

glab.S{2} = [{'GRF Y (right)', 'N'}, glab.dir{2}(1), glab.dir{2}(2)]; 

glab.S{3} = [{'GRF Z (right)', 'N'}, glab.dir{3}(1), glab.dir{3}(2)]; 
glab.S{4} = [{'GRF X (left)',  'N'}, glab.dir{1}(1), glab.dir{1}(2)]; 

glab.S{5} = [{'GRF Y (left)',  'N'}, glab.dir{2}(1), glab.dir{2}(2)]; 

glab.S{6} = [{'GRF Z (left)',  'N'}, glab.dir{3}(1), glab.dir{3}(2)]; 

 

% CoP Labels 

% (label, units, directionSign+, directionSign-) 
% --------------------------------------------------------------------- 

glab.X{1} = [{'CoP X (right)', 'm'}, glab.dir{1}(1), glab.dir{1}(2)]; 

glab.X{2} = [{'CoP Y (right)', 'm'}, glab.dir{2}(1), glab.dir{2}(2)]; 

glab.X{3} = [{'CoP Z (right)', 'm'}, glab.dir{3}(1), glab.dir{3}(2)]; 

glab.X{4} = [{'CoP X (left)',  'm'}, glab.dir{1}(1), glab.dir{1}(2)]; 
glab.X{5} = [{'CoP Y (left)',  'm'}, glab.dir{2}(1), glab.dir{2}(2)]; 

glab.X{6} = [{'CoP Z (left)',  'm'}, glab.dir{3}(1), glab.dir{3}(2)]; 

 

% GRM Labels (Origin) 

% (label, units, directionSign+, directionSign-) 
% --------------------------------------------------------------------- 

glab.Mo{1} = [{'GRMo X (right)', 'Nm'}, glab.dir{1}(1), glab.dir{1}(2)]; 

glab.Mo{2} = [{'GRMo Y (right)', 'Nm'}, glab.dir{2}(1), glab.dir{2}(2)]; 

glab.Mo{3} = [{'GRMo Z (right)', 'Nm'}, glab.dir{3}(1), glab.dir{3}(2)]; 

glab.Mo{4} = [{'GRMo X (left)',  'Nm'}, glab.dir{1}(1), glab.dir{1}(2)]; 
glab.Mo{5} = [{'GRMo Y (left)',  'Nm'}, glab.dir{2}(1), glab.dir{2}(2)]; 
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glab.Mo{6} = [{'GRMo Z (left)',  'Nm'}, glab.dir{3}(1), glab.dir{3}(2)]; 

 

% GRM Labels (CoP) 

% (label, units, directionSign+, directionSign-) 

% --------------------------------------------------------------------- 
glab.Mx{1} = [{'GRMx X (right)', 'Nm'}, glab.dir{1}(1), glab.dir{1}(2)]; 

glab.Mx{2} = [{'GRMx Y (right)', 'Nm'}, glab.dir{2}(1), glab.dir{2}(2)]; 

glab.Mx{3} = [{'GRMx Z (right)', 'Nm'}, glab.dir{3}(1), glab.dir{3}(2)]; 

glab.Mx{4} = [{'GRMx X (left)',  'Nm'}, glab.dir{1}(1), glab.dir{1}(2)]; 

glab.Mx{5} = [{'GRMx Y (left)',  'Nm'}, glab.dir{2}(1), glab.dir{2}(2)]; 
glab.Mx{6} = [{'GRMx Z (left)',  'Nm'}, glab.dir{3}(1), glab.dir{3}(2)]; 

 

 

Script loadEMGLabels: 

% ================================= 

% EMG LABELS 

% ================================= 

% (label, name) 

% Used by getEMG.m to know which EMG analog channels to extract 
% from the C3D file 

% --------------------------------------------------------------------- 

 

% Full Biotel EMG set 

% ------------------- 
glab.BiotelEMG{1}  = {'VM'   ,'Vastus Medialis'}; 

glab.BiotelEMG{2}  = {'VL'   ,'Vastus Lateralis'}; 

glab.BiotelEMG{3}  = {'RF'   ,'Rectus Femoris'}; 

glab.BiotelEMG{4}  = {'GMAX' ,'Gluteus Maximus'}; 

glab.BiotelEMG{5}  = {'GM'   ,'Gluteus Medius'}; 
glab.BiotelEMG{6}  = {'BF'   ,'BF'}; 

glab.BiotelEMG{7}  = {'SOL'  ,'Soleus Lateral'}; 

glab.BiotelEMG{8}  = {'TA'   ,'Tibialis Anterior'}; 

 

% Test EMG set 
% -------------------- 

glab.testEMG{1}  = {'VM'   ,'Vastus Medialis'}; 

glab.testEMG{2}  = {'GM'   ,'Gluteus Medius'}; 

glab.testEMG{3}  = {'SOL'    ,'Soleus'}; 

glab.testEMG{4}  = {'TA'   ,'Tibialis Anterior'}; 

 

Script loadMarkerLabels: 

% ================================= 
% MARKERSET LABELS 

% ================================= 

% Used by getMarkers.m to know which markers to extract 

% from the C3D file 

% --------------------------------------------------------------------- 
 

glab.markersStatic = {'RTPL', 'LTPL', 'SFS', 'TRX', 'STM', 'T1', 'RAM', 'LAM', 'RCIL', 'LCIL', 'RASIS', 'LASIS', 'RPSIS', 'RPSIS', 'SCM', 'RGT', 'LGT', 'RMFE', 'LMFE', 'RLFE', 

'LLFE', 'RTT', 'LTT', 'RFH', 'LFH', 'RMEDMAL', 'LMEDMAL', 'RLATMAL', 'LLATMAL', 'RDIST1', 'LDIST1', 'RDIST5', 'LDIST5', 'RBIGTOE', 'LBIGTOE', 'RHEEL', 'LHEEL', 'RThT', 'RThB', 

'RThR', 'RThF', 'LThT', 'LThB', 'LThR', 'LThF', 'RShT', 'RShB', 'RShR', 'RShF', 'LShT', 'LShB', 'LShR', 'LShF'}; 

                   
glab.markersDynamic = {'RTPL', 'LTPL', 'SFS', 'TRX', 'STM', 'T1', 'RAM', 'LAM', 'RCIL', 'LCIL', 'RASIS', 'LASIS', 'RPSIS', 'RPSIS', 'SCM', 'RGT', 'LGT', 'RMFE', 'LMFE', 'RLFE', 

'LLFE', 'RTT', 'LTT', 'RFH', 'LFH', 'RMEDMAL', 'LMEDMAL', 'RLATMAL', 'LLATMAL', 'RDIST1', 'LDIST1', 'RDIST5', 'LDIST5', 'RBIGTOE', 'LBIGTOE', 'RHEEL', 'LHEEL', 'RThT', 'RThB', 

'RThR', 'RThF', 'LThT', 'LThB', 'LThR', 'LThF', 'RShT', 'RShB', 'RShR', 'RShF', 'LShT', 'LShB', 'LShR', 'LShF'}; 
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%glab.markers = {'RTPL', 'LTPL', 'SFS', 'TRX', 'STM', 'T1', 'RAM', 'LAM', 'RCIL', 'LCIL', 'RASIS', 'LASIS', 'RPSIS', 'RPSIS', 'SCM', 'RGT', 'LGT', 'RMFE', 'LMFE', 'RLFE', 'LLFE', 

'RTT', 'LTT', 'RFH', 'LFH', 'RMEDMAL', 'LMEDMAL', 'RLATMAL', 'LLATMAL', 'RDIST1', 'LDIST1', 'RDIST5', 'LDIST5', 'RBIGTOE', 'LBIGTOE', 'RHEEL', 'LHEEL', 'RThT', 'RThB', 

'RThR', 'RThF', 'LThT', 'LThB', 'LThR', 'LThF', 'RShT', 'RShB', 'RShR', 'RShF', 'LShT', 'LShB', 'LShR', 'LShF'}; 

 

glab.markers(1).name = 'RTPL'; 
glab.markers(2).name = 'LTPL'; 

glab.markers(3).name = 'SFS'; 

glab.markers(4).name = 'TRX'; 

glab.markers(5).name = 'STM'; 

glab.markers(6).name = 'T1'; 
glab.markers(7).name = 'RAM'; 

glab.markers(8).name = 'LAM'; 

glab.markers(9).name = 'RCIL'; 

glab.markers(10).name = 'LCIL'; 

glab.markers(11).name = 'RASIS'; 

glab.markers(12).name = 'LASIS'; 
glab.markers(13).name = 'RPSIS'; 

glab.markers(14).name = 'LPSIS'; 

glab.markers(15).name = 'SCM'; 

glab.markers(16).name = 'RGT'; 

glab.markers(17).name = 'LGT'; 
glab.markers(18).name = 'RMFE'; 

glab.markers(19).name = 'LMFE'; 

glab.markers(20).name = 'RLFE'; 

glab.markers(21).name = 'LLFE'; 

glab.markers(22).name = 'RTT'; 
glab.markers(23).name = 'LTT'; 

glab.markers(24).name = 'RFH'; 

glab.markers(25).name = 'LFH'; 

glab.markers(26).name = 'RMEDMAL'; 

glab.markers(27).name = 'LMEDMAL'; 
glab.markers(28).name = 'RLATMAL'; 

glab.markers(29).name = 'LLATMAL'; 

glab.markers(30).name = 'RDIST1'; 

glab.markers(31).name = 'LDIST1'; 

glab.markers(32).name = 'RDIST5'; 
glab.markers(33).name = 'LDIST5'; 

glab.markers(34).name = 'RBIGTOE'; 

glab.markers(35).name = 'LBIGTOE'; 

glab.markers(36).name = 'RHEEL'; 

glab.markers(37).name = 'LHEEL'; 
glab.markers(38).name = 'RThT'; 

glab.markers(39).name = 'RThB'; 

glab.markers(40).name = 'RThR'; 

glab.markers(41).name = 'RThF'; 

glab.markers(42).name = 'LThT'; 

glab.markers(43).name = 'LThB'; 
glab.markers(44).name = 'LThR'; 

glab.markers(45).name = 'LThF'; 

glab.markers(46).name = 'RShT'; 

glab.markers(47).name = 'RShB'; 

glab.markers(48).name = 'RShR'; 
glab.markers(49).name = 'RShF'; 

glab.markers(50).name = 'LShT'; 

glab.markers(51).name = 'LShB'; 

glab.markers(52).name = 'LShR'; 

glab.markers(53).name = 'LShF'; 
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Appendix B 
 

The file setup.xml for the motion Gait_0004_label: 

<Setup xml_tb_version="3.1"> 

  <Scale> 
 <use>false</use> 

    <motionFile>REF_07_FP2_0001</motionFile> 

    <model>Delp2392_3DAHName</model> 

    <ScaleTask name="RAM"> 

      <weigth>5</weigth> 
    </ScaleTask> 

    <ScaleTask name="LAM"> 

      <weigth>5</weigth> 

    </ScaleTask> 

    <ScaleTask name="RASIS"> 
      <weigth>150</weigth> 

    </ScaleTask> 

         […] 
    <ScaleTask name="LBIGTOE"> 

      <weigth>50</weigth> 

    </ScaleTask> 

  </Scale> 

  <IK> 
 <use>false</use> 

    <IKTask name="RAM"> 

      <weigth>10</weigth> 

    </IKTask> 

    <IKTask name="LAM"> 
      <weigth>10</weigth> 

    </IKTask> 

         […] 
    <IKTask name="LDIST5"> 
      <weigth>10</weigth> 

    </IKTask> 

    <IKTask name="LBIGTOE"> 

      <weigth>20</weigth> 

    </IKTask> 
  </IK> 

  <RRA> 

    <use>false</use> 

    <filter_frequency>6</filter_frequency> 

    <Actuators name="hip_flexion_r"> 
      <optimal_Force>300.0</optimal_Force> 

    </Actuators> 

    <Actuators name="hip_adduction_r"> 

      <optimal_Force>200.0</optimal_Force> 

    </Actuators> 

             […] 
    <Actuators name="lumbar_rotation"> 

      <optimal_Force>200.0</optimal_Force> 
    </Actuators> 

    <Task> 

      <rdCMC_Joint name="pelvis_tz"> 

        <kp>100.0</kp> 

        <kv>20.0</kv> 
        <weigth>5.0e0</weigth> 

      </rdCMC_Joint> 

      <rdCMC_Joint name="pelvis_tx"> 

        <kp>100.0</kp> 

        <kv>20.0</kv> 
        <weigth>5.0e0</weigth> 
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      </rdCMC_Joint> 

              […] 
      <rdCMC_Joint name="lumbar_rotation"> 
        <kp>100.0</kp> 

        <kv>20.0</kv> 

        <weigth>1.0e1</weigth> 

      </rdCMC_Joint> 

    </Task> 
  </RRA> 

  <CMC> 

 <use>false</use> 

    <filter_frequency>6</filter_frequency> 

    <Actuators name="hip_flexion_r"> 
      <optimal_Force>1.0</optimal_Force> 

    </Actuators> 

    <Actuators name="hip_adduction_r"> 

      <optimal_Force>1.0</optimal_Force> 

    </Actuators> 

            […] 
    <Actuators name="lumbar_rotation"> 

      <optimal_Force>1.0</optimal_Force> 

    </Actuators> 
    <Task> 

      <rdCMC_Joint name="pelvis_tz"> 

        <kp>100.0</kp> 

        <kv>20.0</kv> 

      </rdCMC_Joint> 
      <rdCMC_Joint name="pelvis_tx"> 

        <kp>100.0</kp> 

        <kv>20.0</kv> 

      </rdCMC_Joint> 

             […] 
      <rdCMC_Joint name="lumbar_rotation"> 

        <kp>100.0</kp> 

        <kv>20.0</kv> 
      </rdCMC_Joint> 

    </Task> 

  </CMC> 

</Setup> 
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APPENDIX C 
 

Experimenting with user dependent content of the IK 

After the pipeline was implemented and tested successfully, it was used to get the muscle activation 
of the motion Gait_0004. The user depended content for this run can be found in Appendix B. The 
scaling and the IK seemed to have run successfully with it, but the steps RRA and CMC seemed to fail. 
The RRA and the CMC uses both the resulting file of the IK. Therefore, the first thing to look at was 
the resulting motion of the IK using the interface of OpenSim. The interface of OpenSim allows the 
user to load a model (in this case the model that results from the scaling) and motions, like the 
motions created by the IK, and displays it.  As you can see in figure 7, the hip of the skeleton model is 
twisted. 

 

Figure 7: resulting motion of the IK twisted 

The explanation for this is that the weight user dependent content used in the IK is not correct for 
the markers at the hip. Therefore, it was experimented with the user depended content with the aim 
of removing the twist in the hips.  

In the experiment, the weights of markers were changed, then the pipeline ran again with these 
changed weights and look was taken at the resulting IK motions, to see if it changed and the twist 
disappeared. Because only the hip is twisted, it is reasonable to only experiment with the weight of 
the markers around the hip. Therefore, only the weight of the markers RASIS, LASIS, SCM, RCIL and 
LCIL changed during these experiments.  

In the first experiment, the weights were raised to 30. The resulting IK motion did not look any 
different than the one before. Therefore, the change in weights did not change the IK enough. 
Next, the weights of the other markers were lowered to see if this makes any difference. The weight 
of 10 was changed to a weight of 1 and the weight of 20 was changed to a weight of 2 of all markers 
(except of the markers around the hips, which remained 30). Running the pipeline with these 
changes also did not seem to effect the twist at all as it still looks the same.  

The thought that rose was that the raise of the weights maybe was not enough. Therefore, the 
weights of the markers around the hip were raised to 1000. The weights of the other markers 
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remained like they were in the experiment before (around 1 and 2). You can find all the weights with 
marker weight to which it belongs in table 3.  

Table 3: Marker names and their weight for the IK 

Marker name Weight 

RAM 1 

LAM 1 

STM 1 

RASIS 1000 

LASIS 1000 

SCM 1000 

LPSIS 1000 

RCIL 1000 

LCIL 1000 

RLFE 1 

RMFE 1 

RGT 1 

RThT 2 

RThB 2 

RThF 2 

RThR 2 

RLATMAL 1 

RMEDMAL 1 

RTT 5 

RFH 5 

RShT 2 

RShB 2 

RShF 2 

RShR 2 

RHEEL 2 

RDIST1 1 

RDIST5 1 

RBIGTOE 2 

LLFE 1 
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LMFE 1 

LGT 15 

LThT 2 

LThB 2 

LThF 2 

LThR 2 

LLATMAL 1 

LMEDMAL 1 

LTT 5 

LFH 5 

LShT 2 

LShB 2 

LShF 2 

LShR 2 

LHEEL 2 

LDIST1 1 

LDIST5 1 

LBIGTOE 2 

 

After running the pipeline with this IK user depended content for the pipeline, the IK motion finally 
changed: the rotation of the hip changed. As you can see in figure 8 the twist is totally gone. 

 

Figure 8: IK motion of the last experiment. 


