

Muscle activation Database
An Experimentation Project

Name: Cindy Müllenmeister
Student number: 3722252
Teacher: Nicolas Pronost
Date: January 6, 2012

Page | 1

Table of Contents
1. Introduction ... 2

2. Muscle activation .. 3

2.1 Scaling .. 3

2.2 Inverse Kinematics (IK) .. 3

2.3 Residual Reduction Algorithm (RRA) ... 4

2.4 Computer Muscle Control (CMC) .. 4

3. Pipeline .. 5

3.1 OpenSim .. 5

3.2 Matlab Toolbox ... 5

3.2.1 LoadLabels ... 5

3.2.2 WriteXML changes... 6

3.2.3 Additional Functions .. 6

3.3 Setup for the pipeline .. 7

3.4 Walking through the pipeline .. 9

4. Rage Module ... 11

4.1 The database design .. 11

4.2 Programming the Interface of the Database ... 11

4.2.1 Class databaseGUI ... 12

4.2.2 Class resultGUI ... 13

4.3 Programming the main part of the database .. 14

4.3.1 Class Body .. 14

4.3.2 Class Model ... 14

4.3.3 Class MotionInf ... 15

4.3.4 Class SearchEngine .. 15

5. Experiments ... 15

5.1 Objects vs. mapping .. 15

5.2 Reading CMC vs. Min and Max .. 17

6. Conclusion ... 20

References ... 21

Appendix A .. 22

Appendix B .. 26

APPENDIX C ... 28

Page | 2

1. Introduction
In the last few years motion capturing is used more often to create realistic looking animation. One
example of the use of motion capturing the movie Avatar. In this movie James Cameron used motion
capturing with real actors (see [1]) for the animation of the aliens and non-human creatures (see [2]).
Other examples can be found in the gaming industry where animation by using motion capturing
occurs more and more. The game series of Assassin’s Creed is an excellent example (see [3]).
The most often used optimization techniques are applied in the area of films, games and computer
graphics and are, as Komura et al. (2000) mentioned, purely for the “purpose of animation” *4].
Optimization techniques interpolate or retarget the motion capturing data to a given model so that
the model will move according to the movements of the motion capturing. The models of the human
body used for purpose of animation are “simple multibody without any physiological structure” (see
[4]). In other words, the anatomical structure of the human body is neglected.
In the medical field and the field of biomechanics , researchers take motion capturing one step
further with methods that take the anatomical structure into consideration like Komura et al. (2000)
used the motion capturing in their research (see [4]). Despite the possibilities of further advancing
the animation with anatomical structures, the developed techniques in the medical fields and the
field of biomechanics are not used for the purpose of animation. Instead, the researchers are more
concerned with trying “to understand the underlying dynamics of the movement of living beings,
from gait research” [4] and to find and treat patients with for instance gait problems (see [4]) with
help of motion capturing and animation.

Komura et al. (2000) mentioned [4] that the anatomical body is important for the characteristics of
postures and motions, even at relaxed postures. So the muscles in our bodies have influence on the
behavior of joints and torques of the models. Introducing anatomical structure to the models could
improve the realism of the animation that results from the motion capturing. In 1996, Parke et al.
(1996) already tried to improve the realism of facial animation with the use of taking the muscles
movements into account (see [10]). At that time, the computer power was too little to implement
the method designed by them. Nowadays, the power of the computer is greater than years ago.
Therefore, the next step of the animation would be to take this anatomical structure into account
just like in the field of biomechanics.
As the research of Komura et al. (2000) shows, the creation of animation with anatomical structure is
time consuming. To speed up the creation of the animation based on motion capturing data, a look-
up table would be one possibility, with other words, a database that would contain at least muscle
activation. Therefore, a first step into the direction of using anatomical structure in the animation for
the animation community would be the creation of a database of muscle excitation.

The creation of such a database is described later on in this paper. It consists of two parts. The first
part is computing the muscle activation from a motion capturing file. This is done in a so called
pipeline. The pipeline receives a motion captured file (c3d file) as input and follows specific steps to
construct muscle excitation as output. Some of these steps are not performed in real-time, therefore
the pipeline will not run in real-time. The second part is the creation of the database itself as a
module of RAGE. RAGE is a library that consists of many different modules. These modules are used
for analyzing and working with animation data such as motion capturing. The module is designed to
perform online and uses steps that are not time consuming like the pipeline. For this reason the aim
is to get the database run online and as fast as possible.
This paper starts with the description of these specific steps, followed by the description of the
pipeline itself. Next, the programming of the RAGE module is described. In the last part of the paper
some experimenting with the database and the pipeline is described.

Page | 3

2. Muscle activation
Muscle activation is also known as muscle excitation. The calculation of the muscle excitation is
according to Delp et al. (2007) still a major challenge [9]. One recent technique to calculate it is the
Computer Muscle Control (CMC), which still costs such an amount of computation time that real-
time processing is still not possible (see [9]). Before the CMC can be calculated, 3 other steps have to
be performed: Scaling, Inverse Kinematics and Residual Reduction Algorithm. The input needed for
these steps are: a musculoskeletal model, experimental kinematics and reaction forces and moments
(see [9]). The experimental kinematics is actually the motion capturing data such as the coordinates
of the markers. The reaction force and the moments are measured with so called force plates. These
force plates are placed and used during the motion capturing and calculates the forces and moments
for every frame in the x-, y- and z-direction (see [6]). The relation between the individual steps can be
found in figure 1.

Figure 1: Relation between the steps ([9], p.1943)

2.1 Scaling
The first step is scaling of the model so that it matches the “anthropometry of an individual subject”
([9], p. 1943). In the scaling process mass properties, muscle fiber length and dimension of each body
segment and other properties of the model are scaled (see [6], p.21). This is done with the distance
between markers of the motion captured data in relation to the distance between virtual markers of
the model. A second step in the scaling is the use of inverse kinematics. The inverse kinematics
“adjust the locations of the virtual markers” ([6], p.21) in such a way that they better matched with
the location of the markers of the motion captured data. Scaling errors can be reduced this way.

2.2 Inverse Kinematics (IK)
Inverse Kinematic is a problem that needs to be solved to receive joint angles and translations that fit
the marker data of the motion capturing best (see [9]). Solving of this problem is done in the second
step. Furthermore, the IK problem is known as a least-squares problem. It takes the difference
between the marker location of the motion captured data and the location of virtual markers of the
model and minimizes this difference, subject to joint constraints” *9+.

Page | 4

2.3 Residual Reduction Algorithm (RRA)
Experimental errors and modeling assumptions cause often dynamically inconsistence between the
model kinematics received from the second step and the ground reaction forces and moments (see
[9], p. 1943). The third step, the Residual Reduction Algorithm is an algorithm with which this
inconsistence will be helped or at least reduced (see [9], p.1943). The algorithm consists of two
passes (see [6]). The first pass is the altering of the mass “so that excessive leaning in the left-right or
fore-aft directions is corrected” [6].The second pass consists of altering “the kinematics of the model
to be more consistent with the ground reaction data” [6]. For this, three residual forces and three
residual moments are applied to the segments of the model “to control the six degrees of freedom
between the model” [9] and the world (three rotations and three translations).

2.4 Computer Muscle Control (CMC)
The last of the four steps is the Computer Muscle Control (CMC). The CMC is used to calculate the
muscle excitations (see [9]) that (as Delp et al mention) “produce a coordinated muscle-driven
simulation of the subject’s movement”. The set of muscle excitation is computed in such a way, that
it is able to “produce a coordinated muscle-driven simulation of the subject’s movement” (*9+, p.
1944).
To compute the muscle excitation, the CMC uses 5 steps. The first step is the solving of the initial
state of the model (see [6]). After that, the CMC computes “a set of desired accelerations” (*6+, p.
22). For this, it makes use of the proportional-derivative (PD) controller (see [6]). Next, the CMC tries
to minimize the “error between the model coordinates and the inverse kinematic coordinates” (*6+,
p.22) by applying the following equation:

 (see [6])
Finally, the CMC computes the activation of the muscles and the muscle actuators with help of the
static optimization technique.
The output of the CMC is a file containing the muscle activations, the muscle length and joint angles
per frame of the motion capturing.

The whole process is not possible to perform in real-time as mentioned before. For example, Delp et
al. (2007) mentioned that the CMC “that reproduce measured pedaling dynamics” took 10 minutes
to compute it (see [9]).

Page | 5

3. Pipeline
The pipeline makes use of the Matlab Toolbox from A. Sandholm [6] and the program OpenSim as
described below. Because the toolbox is written in Matlab, it was decided to program the pipeline in
Matlab.

3.1 OpenSim
OpenSim is a program that enables the user to model, simulate and analyze musculoskeletal systems
[9]. The first introduction of the program was at the American Society of Biomechanics Conference in
2007 and was used by thousands of people since then (see [7]).
OpenSim contains a variety of features including scaling, Inverse Kinematics (IK), Residual Reduction
Algorithm (RRA) and Computer Muscle Control (CMC).
The program can be used over its interface which is written in Java (see [7]). First, before working
with this interface, the user has to check the default properties of it.
Through the interface, the commands for the Scaling, IK, RRA and CMC can be carried out with hand
or with configuration files. To be able to use these commands in the pipeline, they need to be
accessible outside of the interface, which they are. Using them outside the interface requires the use
of configuration files. Therefore, these files need to be generated before using the OpenSim
commands. The Matlab toolbox is able of generating these configuration files automatically.

3.2 Matlab Toolbox
The Matlab Toolbox used in the pipeline was presented by Sandholm et al [6]. The toolbox contains
features like reading the c3d files, translating data into model coordination system, applying noise
reduction, creating motion files with a specific format and creating configuration files used in
OpenSim ([6], pp.38-39).
All those features are used in our pipeline. The first time using the Matlab Toolbox, it seemed that
the function loadLabels was missing and also session_setup as mentioned in [5] p. 40. Therefore, a new

function loadLabels was created during the process of programming the pipeline as described below.
Furthermore, the function writeXML had to be changed for the pipeline (see 3.2.2).
The configuration files make use of additional files containing additional (partly user depended)
information, for example the configuration file for Scaling uses the additional file Scale_IK_Tasks.
These additional files need also be created with the Matlab Toolbox. Unfortunately, functions that
enable the user of the Matlab toolbox to automatically create these additional files are missing
completely. Therefore, new functions that will be capable of creating the additional files need to be
implemented.

3.2.1 LoadLabels

According to the code of the toolbox, the function loadLabels gets a c3dkey as a parameter and returns
this parameter at the end of it. The code of the toolbox further indicated that the toolbox adds a

structure named glab to the c3dKey which contains joint names, muscle names, FP suffix and prefix and
a few other variables/structures. As it was not clear in the coding what exactly those names, prefix,
suffix and other variables/structures should contain, an older version of the toolbox was used as
guidance. The older version of the toolbox contains loadLabels, but as a script and not as a function.
This script contains the following items:

1a) Force Plate Naming Convention
1b) Coordinate Vector Setup
1c) Vicon / OpenSim Offset Marker
1d) Joint / Muscle Model

Page | 6

2a) Force Plate Labels
2b) Force Plate Directions
2c) GRF Labels
2d) CoP Labels
2e) GRM Labels (Origin)
2f) GRM Labels (CoP)
3a) joint labels
3b) muscle labels
4) EMG labels
5) Markerset labels

The toolbox already contains 5 scripts for the joint and muscle labels: loadJointDelp23, loadJointDelp31,

muscleDelp92, loadMuscleAnderson54 and loadMuscleAnderson54Patella. To make loadLabels more flexible and easy
to switch names, used joint scripts, used muscle scripts and values, all the items of the script loadLabels
(except 3a and 3b as the scripts for those already existed) were divided into the scripts
loadFPLabDependancy, loadFPPlotting, loadEMGLabels and loadMarkerLabels. The function loadLabels then only opens
all the scripts and assigns everything in the structure glab to the c3dkey. At the moment, the loadLabels

loads the scripts loadJointDelp23 for the joints and muscleDelp92 for the muscles and can be changed any
time to other muscle and joints sets as needed. The full code for the function loadLabels and the
additional scripts can be found in Appendix A.

3.2.2 WriteXML changes

The writeXML function in the toolbox is the one that creates the configuration files for the Scaling, IK,
RRA and CMC commands of OpenSim. To be correctly used by the pipeline, a few changes had to be
made. The first change was the adding of an extra parameter for a filtering frequency. In the
configuration file for RRA and CMC, a filter frequency is defined. Before the change, writeXML would
always set the value of the frequency to -1 because it was hard coded to do so. Now, the user can
define the filter frequency beforehand.

The next change that was made in the function writeXML was the order of all the lines of the
configuration files for Scaling, RRA and CMC. This was to make it easier in comparing it to example
files to see what lines and values were still missing.
For writing the configuration file for the scaling, the height, age and note were taken out as they
never change of values and are of no use for the scaling itself. Furthermore, the function for writing
the scaling configuration file always checks if manual scaling was used or not. As it is planned to
always use an extra file containing the Scale set, this check was not necessary anymore.

Another major change made in this function is for the creation of the configuration file for CMC.
Here, the function always assumed a RRA will be done before the CMC and therefore creates a
configuration file for the CMC that will use the result of the RRA. It could happen that the RRA was
not necessary in which case the CMC configuration file has to use the IK data’s instead of the RRA.
Therefore, the major change here is a check whether or not RRA had been done before. If RRA had
been done, nothing changes. If not, the CMC configuration file uses now the IK data’s instead of the
RRA.

3.2.3 Additional Functions

The configuration file for the scaling, IK, RRA and CMC created by the toolbox all need extra files to
run correctly in OpenSim. The configuration file for the Scaling needs 3 different extra files, the
configuration file for the IK needs only 1 extra file, the configuration file for the RRA and the

Page | 7

configuration file for the CMC need 3 extra files. This makes in total 10 extra files needed for the
whole process.
The Matlab Toolbox has no function that is able to create these files automatically. This is why extra
functions are necessary that are able to create these files automatically. As most of the content of
the 10 files are different, 10 different functions were added to the toolbox, one for every file. These

functions are: writecmcActuators, writecmcconstrain, writeCMCTask, writeIKTask, writerraactuators, writerraconstrain,
writeRRATask, writeScaleMeasuremenSet, writeScaleSet and writeScaletask.
The content of all these files can be split into two categories: user depended content and non-
changeable content. The non-changeable content stays the same with every motion. Therefore, it
was decided to hard code it into the functions. The user depended content on the other hand is
different. This content can be different from motion to motion and the number of it can also vary.
Furthermore, it is not possible to predict the content beforehand. This means that the user has the
responsibility to give the functions these contents. This user depended content has therefore to be
placed into xml file which all the functions will read out and pick their part for their files from.
So, the 10 functions work all the same: first open the file which contains the user depended content,
search for the part needed in that function, creating an xml file with the user depended content and
the hard coded content.

Additional to the extra files, the configuration files require a trc-file of the motion. A trc-file is a file
that contains the time and the coordinates (x,y and z coordinates) of every marker for every frame in
a specific format. It is possible to create this trc-file beforehand with a program called Mokka. This
program is able to save the c3d information in a trc-file. Nevertheless, the aim is that the pipeline will
do every step automatically on its own and this includes also the creation of the trc-file.
Unfortunately, the command to save the c3d file as a trc-file from the program Mokka is not
accessible from the command line. This also means that the pipeline cannot access it. Because all the
information needed is already accessible thanks to the Matlab Toolbox, the best way to get a trc-file
is a new function that saves one itself with all the information it gets from the Matlab Toolbox. The

function for this is called generateTRCFile. This function takes the c3dKey as a parameter which is created
with the Matlab Toolbox beforehand. It then takes all the information needed for a trc file out of the

c3dKey and prints it in a new created trc-file according to the specific format of the trc-file.

With those additional functions, the Matlab Toolbox is complete for the pipeline and creates
everything needed for the pipeline to run smoothly.

3.3 Setup for the pipeline
Before the user can run the pipeline, he/she has to set everything up in the way the pipeline will
expect it.

First of all, the input of the pipeline will be c3d files. The amount of c3d files can be different every
time the pipeline will be run. So that the pipeline will know the number of motions and the name of
each one of them, the user has to fill specific information into a file called motions. The file motions
was first a txt-file where only the names of all motions had to be written in. During the first design of
the database, it became clearer that additional information for every motion for the database was
required, such as the sort of motion.
Therefore, the file was changed to an xml file. The file motions.xml contains one section called
motions. This section contains as many subsections as there are motions for the pipeline with the
name mot. Every mot section has exactly 4 subsections: name, group, subgroup and person. The
section name contains the name of the motion, whereby the section person contains the name of the
person who performed the motion. As the design of the database also requires the knowledge of the
sort of motion that is performed, the section group was added that will contain this information.
Furthermore, some motions can have additional information such as degree of the feet position

Page | 8

during a motion of the sort crouch. This extra information can be written in the section subgroup. It
is however possible that for some motions no information (that could be fit into for example the
subgroup) exists or the user does not want to specify this. In that case it was first tried to leave that

section empty. The Matlab xml parser then automatically filled in the information of the previous
section. Therefore, it was decided that the user needs to fill that section with a dot instead.
So, the file motions.xml should for example for two motions look like this:

<motions>

 <mot>

 <name>Gait_0004_label</name>
 <group>gait</group>

 <subgroup>.</subgroup>

 <person>Tobias</person>

 </mot>

 <mot>
 <name>Gait_0007_label</name>

 <group>gait</group>

 <subgroup>Testsubgroup</subgroup>

 <person>Matthijs</person>

 </mot>

</motions>

Next to this file, the user has to create a folder named Common. This folder should contain all model
files that will be used in the scaling and all the reference files for all the motions. What happens with
these files will be explained in chapter 3.4.

The next preparation the user has to make before starting the pipeline is creating folders for every
c3d file with the same name as the c3d file next to the folder Common. In those folders, the user
needs to place the c3d files and an xml file called setup. You can find an example of the resulting file
hierarchy in figure x.

Figure 2a: Folder Hierarchy

The file setup.xml contains 4 sections next to the head section: Scale, IK, RRA and CMC.
In the other four sections, the user can first specify if the pipeline should run the OpenSim
commands with the same names under the section use. If the user decides to not use one of these
commands, he/she has to make sure that the folder contains a file of the same sort and name as the
one this command would produce, otherwise the pipeline will fail.
In the section scaling, the user needs to specify the name of the reference file in the section
motionFile and the model that is scaled according to the reference file in the section model. Next to
these sections, the user also needs to specify ScaleTasks with name and weight. These ScaleTasks are
the user depended content of the IK Task that the configuration file for the scaling needs (see 3.2.3).
In the section IK, the user only needs to specify IKTasks with name and weight for the additional Task
of the IK configuration file.

Figure 2b: Content of
main folder Pipeline-
Gait

Figure 2c: Content of one motion
folder (Gait_0004_label)

Figure 2d: Content of the folder Common

Page | 9

Section RRA needs to be filled with the subsection filter_frequency containing the filtering frequency
for the configuration file and subsections Actuators with name and optimal force, which are needed
to create the Actuator file for the RRA configuration file. The number of subsection Actuators
depends on the user itself. Next to these sections, the section RRA also contains a section called
Task. In this section the user needs to specify joints with name, kp, kv and weight of it. This user
specified information will be used for the generation of the Task file for the RRA configuration file.

The sections CMC contains the same subsections as the section RRA with the difference that the
sections joint only contain name, kp and kv. It is possible that the user fills the subsections with
exactly the same values as the subsections of the section RRA. Because it is possible that the user will
use different values in the CMC than in the RRA, it was decided to use two different sections for the
CMC and for the RRA. An example of this configuration file for the motion Gait_004_label can be
found in Appendix B.

3.4 Walking through the pipeline
The pipeline starts with reading in the file motions.xml. The pipeline takes the name of the first
motion and enters the folder of the same name. In that folder, it will open the setup.xml file. The first
section of this file is Scaling. If the user specified the use of it as true, the pipeline will look into the
folder Common if a folder exists with the same name as specified in section motionFile. If the folder
exists, the pipeline will just copy the scaled model out of this folder into the motion folder and is
done with the scaling. If the folder does not exist, the pipeline will create it, copy the reference
motion file and the model file into it, create the configuration file for the scaling and all the needed
extra files and use the scaling command of OpenSim to scale the model with the reference file. The
resulting scaled model is then copied to the motion folder.
Next in the configuration file is the IK. If this is set on true, the pipeline will create the IK
configuration file and the additional files that the configuration file requires. After creating these
files, the pipeline will run the IK command of OpenSim.
If the user specified the use of the RRA as true, the pipeline will then create the configuration file for
OpenSim and the additional needed files. After that, the pipeline will run the RRA with OpenSim. For
the RRA, OpenSim does not have a separate command. Instead, the command cmc.exe is used with
the RRA configuration file. The content of the RRA configuration file makes sure that a RRA is then
performed instead of a CMC.
CMC is now the next section. The pipeline will again make sure if the user stated the use of it as true.
If not, it will just skip it. If it is stated as true, the pipeline will create the configuration file for the
CMC. For this, it has to check whether or not the user used the RRA. When the RRA was not used, the
configuration file will only make use of the results from the IK. Otherwise, it will make use of results
of the RRA. Furthermore, the additional files are created and the pipeline runs at the end the CMC
command with OpenSim.
The result of the CMC is a file containing the muscle activation of the (first) motion. This file is the
result of the pipeline for the motion and is therefore the output of the pipeline. Now, the pipeline
could go further with the next motion in the motions.xml file, but before it does so, the pipeline
needs to do something else: combining the data of different files into one for the database. Most of
the data the pipeline needs to put into the file for the database are already loaded into it: the four
sections (group, subgroup, person and name of the motion) from the motions.xml file and data from
the model. The only data that the pipeline additional needs for the file for the database are the
muscle activations from the results of the CMC. To read the file that contains the muscle activation, a
new function was created: readCMC. It reads the whole file that contains the muscle activation,
calculates the minimum and maximum value of each joint angle and muscle activation and gives it to
the pipeline. The pipeline saves the data of a motion in an xml file called databaseQuery under a new
section called mot.

Page | 10

The pipeline is now finished with processing of a motion of the file motions.xml. It repeats these steps
for every other motion in the file. After the last motion was processed, the pipeline will print on the
command line that it is finished.

The whole pipeline was programmed in two files. The first file is called pipeline and is a Matlab script.
This script reads the motions.xml file, the scaling and the preparations for the pipeline. The second
file, runPipeline, is a function. It gets information from the first script and does all the other steps: IK,
RRA and CMC.

Page | 11

4. Rage Module
The library RAGE, RAGE stands for "Real-time AGS Game Engine” *8+, consists of many different
modules. The modules are for analyzing and working with motion capturing, animation platform and
others. It is possible to extend the program with new modules. The languages used for the program
are C++ and Python. C++ is used for the calculations and process running (in the background) such as
calculating physics for example. Python is used for the interface and communication with the graphic
engine Ogre and RAGE library.

4.1 The database design
The muscle activation database is programmed as a new module for RAGE. The module should
enable the user to search for motions in the database and that (another) module is then opened with
the results of this search.
The first question for this is: On what should the user be able to search? All the results from the
scaling can be used as parameters and search criteria’s. The same goes for the results of the IK, RRA
and CMC. Also, additional information received from the user can also be integrated into the
database and used as search parameters. To use all of these parameters/information as search
parameters would be a lot to program and also would give the user too many choices. Therefore, it is
decided to limit it to the results of the CMC (to be more precise: the joint angles and the muscle
activation), body sets of the models from the scaling and the additional data from the user. It is
possible to change these later to other search criteria.
The next question that needs to be answered is: How should the user chose criteria? The first
thought was to put the possible values of the search criteria in multi-selectable lists. This would
mean that the user would have many lists with values out of which he/she could choose one or more
values. In the case of this database, the user would have 11 different lists to choose from: Names,

Scaled models, Groups, Subgroups, Persons, Duration of the CMC, Bodysets, Mass, Center of Mass,

CMC joints and CMC muscles.

The lists for the mass of the body set, for the muscle activation and for the joint angle would only
contain numbers. The number of values in these lists can be very large and the difference between
the numbers in the lists can be very small. Therefore, it can become hard for the user to use the lists
with these numbers and could also become time consuming with searching for all these different
values. A better solution for these search criteria’s is to let the user enter minimum and maximum
values. The database then has to search the motions where the values of the mass, joint angles
and/or muscle activation lies between the given minimum and maximum.
So far, the design of the database shows how the user can search through the motions and on what
data the database is able to look for. The only question that remains now is: How to load in the
database? It is possible that the user used the pipeline for more than one run in different folders, but
wants to combine these motions now in the database. Furthermore, the pipeline is already
programmed in such a way, that it also produces a xml file containing all information the database
needs as mentioned before. Therefore, the decision is to let the user browse to those xml files and
read in the information contained in these files and build the database based on them. As users are,
he/she might make a mistake, for example load accidentally in more than he/she actually wanted. To
help solve this mistake, the database will have an additional button: clear. With this button, the user
can unload the whole database and restart with the loading of it.

4.2 Programming the Interface of the Database
The interface of the database is programmed in Python and can be found in the script
muscleDatabasetest.py. This script contains two classes: databaseGUI and resultGUI.

Page | 12

4.2.1 Class databaseGUI

The class databaseGUI is the class that is called upon from the main part of the script. First, it creates a
new module. This module contains a file browser and two buttons next to it (Create Database button
and a Clear button), 8 empty lists and 8 text fields where the user can enter minimum and maximum
values. Another button called Search motions is under these lists and text fields. You can see the
entire interface layout in figure 3.

Figure 3: Interface of the Database query

The file browser from the wx.lib needs a function that is called as soon as one file is chosen. Because
the user could chose a wrong file, the function for this, ApplyMapFile, is a dummy function that just
prints the name of the chosen file.

The button Create Database makes use of the function CreateDatabase as soon as it is selected.
CreateDatabase is a function that reads every motion from the file the user chooses with the file

browser and uses the functions givenMotionData, handleModelData and handleCMC to fill the list and handing
down the information to the C++ part.
The function givenMotionData reads the group, subgroup, motion name, model name and person names,
fills different lists with these values and hands the information down to the C++ part.
The function handleModelData is responsible to read in for the body set data’s, fills lists with it and hands
the data down to the C++ part. handleCMC does the same with the CMC related part of the xml file.
So after pressing the button Create Database, the lists will be filled (see figure 4).

Page | 13

Figure 4: Database filled with data

The button Clear has the opposite effect. It will clear all the lists with the function ClearDatabase. Next
to clearing all the lists the user can see, it also hands down the command of clearing everything to
the C++ part.
Search motions is bound to the function SearchMot, this function calls functions for every list and text
field to get the user input of it and hands it down to the C++ part. Finally, it calls the function getResult.
This function calls the search function of the C++ part, saves the result in the global variable results
and creates a new instance of the class resultGUI.

4.2.2 Class resultGUI

The class resultGUI is actually a simple one. It is creating a new module in the existing interface and fills
the module with all motion names found in the global results (see figure 5).

Page | 14

Figure 5: Tab with the result of the search

4.3 Programming the main part of the database
The main part of the database cannot be found in the interface but in the part that runs in the
background, the C++ part. This is the part that actually keeps track of the every motion with all its
information in the database. The whole C++ code consists of 4 Objects/classes: Body, Model, MotionInf and

SearchEngine.

4.3.1 Class Body

The class Body is meant to keep track of all the values of the body sets. Therefore, it has variables for
the mass, the inertia, the center of mass and the name of the body set. Other classes can get these
variables with the different get-functions of this class.

4.3.2 Class Model

Because a model can have more than one body set, this class was designed to create one object for
every model with a name and all its body sets. The body sets can be added with the set function and
retrieved with the get function. Because there can be more than one body, the get function needs
the name of the body set to retrieve the right one as a parameter. The name is set as soon as the
constructor is called. Therefore, it has no set function, only a get function to retrieve the name.

Page | 15

4.3.3 Class MotionInf

MotionInf contains all the information belonging to one motion. This includes one object of the model
belonging to the motion, the name of the motion, the group and subgroup it belongs to, the person
performing the motion, the duration of the CMC and two containers, to be more specific maps. A
map is container from the standard library in C++ that stores the elements formed by a combination
of keys and mapped values. One contains the minimum and maximum value of the joint angles map
with the joint names, and one contains the minimum and maximum values of the muscle activation
mapped with the muscle name as key. All the variables are set in the constructor (except the two
maps) and have therefore no set function. The class does however contain a get function to retrieve
the values in the variables. For the two maps, there exist set functions. These functions get the
names, the minimum value and the maximum value and insert it into the maps. The get functions for
these maps retrieve of the minimum and maximum values of the map according to the name (the
mapping key) given in the parameter.

4.3.4 Class SearchEngine

The class SearchEngine is actually the main class. It creates the MotionInf and Model objects if they don’t
exist yet, maps them with their names as keys and keeps this way track of them. The objects of the
models are mapped extra with their name as key despite the fact that they are already mapped in

MotionInf. The reason for this is that more than one motion can contain the same model. If a new
motion is now inserted into the SearchEngine with a model that already exist in the database, the object
of the model can easily be found in the map and linked to the motion. Having two objects containing
the exact same information would be a waste of space.
Beside these maps, the class has also 9 vectors. These vectors are filled with all the search
parameters, which the user selected in the interface, with set functions. The function clearSearch
empties these vectors. The vectors containing the search parameters have to be emptied after every
search. If the user clicks the button Clear in the interface, the whole database here has to be cleared.

This is what the function clearDatabase does: it empties the two maps which in fact are the whole
database.
The most important function in this class is the searchMotions function. This function goes through the
map of motions. For every motion, the function looks at the information of the motion starting with
the name and compares it with the values in the search vector that belongs to that information. For
example looking at the name of the motion and comparing it with the values of the vector searchName.
If one of the values in the vector is the same or the vector is empty and this is the same for every
other search vectors, the name of the motion is added to a resulting vector. This resulting vector is
returned at the end of the function.

5. Experiments
The design of the database is a first setup and can be changed later as wished. During the design of
the database and the pipeline, there was for some points more than one option in how to
program/build it. For these points and to see if the goal of a database works as fast as possible and in
real-time, experiments were conducted to see what the best solution would be.

5.1 Objects vs. mapping
The first idea during the designing of the database was to use mappings instead of objects. For every
kind of information, one map would be used that maps strings of the information to a vector
containing motion names that have these information, for example a map for the groups in which
the string Gait maps to a vector containing the names Gait_0004 and Gait_0007. Other information
part that would contain extra information, for example body sets containing mass, center of mass

Page | 16

and inertias of the body set, would not map a vector to string, but instead a structure. The structure
would then contain the extra information and a vector with the motions belonging to that
information. A mapping of the body sets would then map a structure to the name of the body and
the structure would contain the mass, center of mass and inertia next to the vector of motions, as
example.

The database would now need n such maps. These n maps contain m keys with vectors and the
vectors contain k values. The search for motions in the worst case scenario (with l search criteria’s for
every information) would then need a time of O((n*m*l)+(s*k)) where s is the number of vectors that
match the search criteria’s.

Another idea was to use objects instead of mapping. An object of the motion would then contain m
information. In a search (with l search criteria’s for every information) through n motions would in
the worst case scenario need a time of O(n*m*l). This is slightly better. Furthermore, this approach is
more object orientated than the approach with the mapping and will therefore result in better
maintenance possibilities and extending possibilities future. Because of that, objects are used instead
of mapping in the database.

Table 1: Worst case calculations

Number
of

motions

Number of
different
kind of

information

Number of
different values

for the
informations

Number of
different search

criteria’s for
every

information

Number of
found

Vectors

Length
of

vectors
O((n*m*l)+(s

*k)) O(n*m*l).

10 20
10

10 10 1
O((20*10*10)

+(10*1)) =
O(2010)

O(10*20*10
) =O(2000)

20 20
20

20 20 1
O((20*20*20)

+(20*1)) =
O(8020)

O(20*20*20
) =O(8000)

20 20
20

10 10 1
O((20*20*10)

+(10*1)) =
O(4010)

O(20*20*10
) =O(4000)

30 20
30

30 30 1
O((20*30*30)

+(30*1)) =
O(18030)

O(30*20*30
) =O(18000)

30 20
30

10 10 1
O((20*30*10)

+(10*1)) =
O(6010)

O(30*20*10
) =O(6000)

50 20
50

50 50 1
O((20*50*50)

+(50*1)) =
O(50050)

O(50*20*50
) =O(50000)

50 20
50

10 10 1
O((20*50*10)

+(10*1)) =
O(10010)

O(50*20*10
) =O(10000)

100 20
100

100 100 1
O((20*100*11
00)+(100*1))
= O(200100)

O(100*20*1
00)

=O(200000)

Page | 17

5.2 Reading CMC vs. Min and Max
As was described in the design of the database, the user can search with minimum and maximum
values muscles activations and/or joint angles. For this search, two different ways were thought
about.
The first way is that the pipeline calculates the minimum and maximum values beforehand and that
the database only needs to look up if the minimum value given by the user falls between the
minimum and maximum value of the calculated one.
The other ways of implement the search was that the database itself has to look into the CMC file
and that the pipeline gives only the directory in which the file can be found.

To be able to compare these two ways, both were implemented and run. Let’s first look at the
pipeline by letting it run twice with two motions. The first run is without calculating the minimum
and maximum values of the joint angles and muscle activity and the second is run with these
calculations. In the setup of the two motions the IK is defined as not to use and for one motion is
even all the scaling, RRA and CMC set to not be used.
The first run of the pipeline took 9 minutes and 15 second until it was finished. The second run on
the other hand took even longer until it was finished: 11 minutes 57 seconds. So the second run took
2 minutes 42 minutes longer than the first run. Because the files the pipeline opens and uses to
calculate the minimum and maximum are the same size of both motions, the time it takes should be
equal for both motions. This means that reading the file and calculating the minimum and maximum
for every joint angle and muscle activation takes for every motion 1 minute 21 seconds. Because
both motions have 185 frames, this would be 0.478 seconds per frame.

The run of the pipeline with and without calculation of the min and max values was also done once
with three motions and once with six motions. In all the motions are the use of the Scaling, IK, RRA
and CMC set to false. These were calculated beforehand with the pipeline because only the time it
needed for the calculation of the min and max values are of interest here. You can find the total time
the pipeline needed to and the calculated time difference between the run with the calculation of
the minimum and maximum values and without in table 2.

Table 2: Time the pipeline took to run with different amount of motions and the calculated difference between running
with and without calculating min and max values

Number of
motions

With calculation
of min and max

values?
Total Time of
the pipeline

Time difference

Time
difference
per motion

Time
difference
per frame

2 No 9 min 15 sec
2 min 42 sec 1 min 21 sec 0.478 sec

2 Yes 11 min 57 sec

3 No 6 min 36 sec
3 min 23 sec 1 min 7.7 sec 0.367 sec

3 Yes 9 min 59 sec

6 No 13 min 01 sec
7 min 00 sec 1 min 10 sec 0.378 sec

6 Yes 20 min 01 sec

Page | 18

Now, let’s look at the database. First, the database was loaded in twice: once with the minimum and

maximum values and once without the minimum and maximum values. Both loading processes

seemed not to make any time difference. It is possible that with an amount of hundred of motions

that the difference between these loading processes would be measurable, but it probably would

make only a slightly difference.

When the minimum and maximum values are not loaded in, the database still needs to be able to
search through the values of the joint angles and/or muscle activation to see if it contains values that
are between the maximum and minimum value of the user. For this, another function was
implemented: readCMCFile. This function reads a CMC file in and scans through the lines. For every
line, it looks for the i-th column. The number (i), for the number of the column, has to be given to the
function through the parameter. For now, this function is only a test function and reads one hard
coded file and can later be changed to a variable file-address. Another button (Test reading File) was
added to the interface that would call this function with the number 3 (see figure 6).

Figure 6: the new test button in the RAGE module

Because the first time clicking on this button it was not clear when the function finished reading
through the file, a breakpoint was placed at the end of the new implemented function. Now clicking
on the button until the break point was reached took between 3 and 4 seconds. Just like the motions
in the pipeline, consist the file the database reads of 185 frames. This means that the database takes
between 0.016 seconds and 0.022 seconds for the reading of one frame. On the other hand, clicking
on the search button (which still uses the calculated minimum and maximum values of the joint
angles and muscle activity as described in chapter 4.3) finished in less than 1 second. The difference
between 3 and 1 second does not seem much, but the test was only conducted with one motion.
Searching through files for 100 motions would then take approximately 300 seconds, while on the
other hand searching with the calculated minimum and maximum values for 100 motions would take
approximately 100 seconds or even less.

The experiments with the pipeline and the database show that the pipeline will consume more time
for calculating the minimum and maximum values than it actually saves for the database search. The
time, the pipeline needs to calculate the min and max values, is (as the experiments show in table 2)
almost totally proportional. Proportionally does every frame of all the motions consume a time of
approximately 0.478 seconds for the computation of the min and max values. In comparison to the
time the database needs to read the one frame of the CMC file by itself is it a lot of time. On the
other hand, the pipeline already needs a lot of time to perform the steps necessary for the
calculation of the muscle activation as you can see in table 2. The database only takes one or even
less than one second to start up and is able to run online.
Furthermore, reading the CMC file in the database gives the opportunity to even look at the values at
every frame. This would make it possible to search for frames in the CMC that are for example
between a specific minimum and maximum and return those frames next to the name of the motion
as result of the search.
Because the aim is to make the database as fast as possible, it was chosen to calculate the minimum
and maximum values and use them in the database search despite the longer time it takes in the
pipeline. Furthermore, it is enough for now to only return the name of the motions that fit the search
criteria instead of including the frame numbers in the result. It is possible to change this if it is

Page | 19

required because the function that reads the file already exists. The only changes that have to be
made is making the reading more flexible (for example by letting the pipeline give the folder and file
name) and take the part of calculating the min and max values in the pipeline out of it. Next to this,
the returned and in the new tab printed result has also be changed to giving and printing the found
frame numbers.

Page | 20

6. Conclusion
In this paper, the design, implementation and experimenting of a muscle activation database was
described. This muscle activation database tries to make a step of the motion capturing for
animation purpose in the direction of taking the anatomical structure into consideration as it is
already done in the field of Biomechanics. The next steps would be to use this database to further
Nevertheless, the time the database will need will rise with more motions in the database which can
result in the inability to run online. Because the aim was that the database will run online and as fast
as possible, it was decided to let the pipeline calculate the min and max values of the muscle
activations and joint angles.
The search criteria’s and input of these can still be changed if wished. If other search criteria’s or

other way of searching is chosen, it is recommended to test if the database will still run with these

changes in real-time as this is the aim of the database.

Page | 21

References
[1] The Art of Motion Capturing in Avatar, Retrieved December 28, 2011 from

http://www.vizworld.com/2009/12/art-motion-capture-avatar/
[2] Avatarblog, Behind the Scenes Look at the Motion Capture Technology Used in AVATAR, Retrieved

December 28, 2011 from http://avatarblog.typepad.com/avatar-blog/2010/05/behind-the-
scenes-look-at-the-motion-capture-technology-used-in-avatar.html

[3] Assassin’s Creed 2 – Motion Capture, Retrieved December 28, 2011 from
http://assassinscreed.uk.ubi.com/community-news/?p=3391

[4] T. Komura, Y. Shinagawa and T.L. Kunii, “Creating and retargeting motion by the musculoskeletal
human body model” in The Visual Computer, vol. 16, 2000, pp.254-270

[5] A. Sandholm, “Neuromuscular Modeling and Visualization of the Human Lower Extremities” at the
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Phd Thesis nr. 4923, 2011

[6] A. Sandhol, N. Pronost and D. Thalmann, “MotionLab: A Matlab toolbox for extracting and
processing experimental motion capture data for neuromuscular simulations” in Proceedings of
the Second 3D Physiological Human Workshop (3DPH) 2009, Lecture Notes in Computer Science,
vol. 5903, 2009, pp. 110-124

[7] F. Anderson, E. Guendelman , A. Habib, S. Hamner, K. Holzbaur, C. John, J. Ku, M. Liu, P. Loan, J.
Reinbolt, A. Seth and S. Delp, “OpenSim User’s Guide” at https://simtk.org/home/opensim,
Release 2.2, September 13, 2010

[8] What does RAGE stand for?, Game technology lab, Retrieved December 28, 2011 from
http://www.gametechnology.nl/index.php?option=com_content&view=article&id=49:rage-
name&catid=27:rage&Itemid=54

[9] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman and D. G.
Thelen, “OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of
Movement” in IEEE Transactions on Biomedical Engineering, vol. 54, nr. 11, November 2007, pp.
1940 – 1950

[10] F. I Parke and K. Waters, “Computer Facial Animation”, 1996, ISBN 1-56881-014-8

http://avatarblog.typepad.com/avatar-blog/2010/05/behind-the-scenes-look-at-the-motion-capture-technology-used-in-avatar.html
http://avatarblog.typepad.com/avatar-blog/2010/05/behind-the-scenes-look-at-the-motion-capture-technology-used-in-avatar.html
http://avatarblog.typepad.com/avatar-blog/2010/05/behind-the-scenes-look-at-the-motion-capture-technology-used-in-avatar.html
http://www.gametechnology.nl/index.php?option=com_content&view=article&id=49:rage-name&catid=27:rage&Itemid=54
http://www.gametechnology.nl/index.php?option=com_content&view=article&id=49:rage-name&catid=27:rage&Itemid=54

Page | 22

Appendix A

Function loadLabels:

function C3Dkey = loadLabels(C3Dkey)

loadFPLabDependancy;
loadFPPlotting;

loadJointDelp23;

muscleDelp92;

loadEMGLabels;

loadMarkerLabels;
glab.modelJointData = glab.jointDelp23; % Joint convension

glab.muscleModel = glab.muscleDelp92; % Muscle convension

C3Dkey.glab = glab;

Script loadFPLabDependancy:

% =================================

% LAB DEPENDANCY

% =================================

% 1a) Force Plate Naming Convention

% ---
% Force plate numbers MUST be set up within the lab.

% The names of the channels of these force plates are defined here.

% EXAMPLE

% glab.FP.string = '%s%d%s';

% glab.FP.prefix = {'FP','FP','FP','FP','FP','FP'};

% glab.FP.suffix = {'Fx','Fy','Fz','Mx','My','Mz'};
%

% Moment about FP #3 in the X direction analog channel = 'FP3Mx'

% Please note that the glab.FP.string IS CASE SENSITIVE

% ---

glab.FP.string = '%s%d%s'; % Prefix, PlateNum, Suffix
glab.FP.prefix = {'FP','FP','FP','FP','FP','FP'};

glab.FP.suffix = {'Fx','Fy','Fz','Mx','My','Mz'};

glab.FP.verticalForceIndex = 3;

% 1b) Coordinate Vector Setup
% ---

% This section sets transformation vectors that are crucial to the

% rigid body transformations needed between the Force Plate, Vicon,

% and the Model coordinate systems.

%
% Example: FP coord system -> Model coord system

% glab.dirVec.FPMODEL(3,:) = [2 -3 -1];

%

% MODEL X = FP Y

% MODEL Y = FP -Z
% MODEL Z = FP -X

% ---

% X direction (Vicon) Gait -> transformation vectors

glab.dirVec.FPMODEL(1,:) = [-1 -3 -2]; % FP coord system -> Model coord system

glab.dirVec.VICMODEL(1,:) = [1 3 -2]; % Vicon coord system -> Model coord system

% -X direction (Vicon) Gait -> transformation vectors

glab.dirVec.FPMODEL(2,:) = [1 -3 2]; % FP coord system -> Model coord system

glab.dirVec.VICMODEL(2,:) = [-1 3 2]; % Vicon coord system -> Model coord system

% Y direction (Vicon) Gait -> transformation vectors

Page | 23

glab.dirVec.FPMODEL(3,:) = [2 -3 -1]; % FP coord system -> Model coord system

glab.dirVec.VICMODEL(3,:) = [2 3 1]; % Vicon coord system -> Model coord system

% -Y direction (Vicon) Gait -> transformation vectors

glab.dirVec.FPMODEL(4,:) = [2 -3 -1]; % FP coord system -> Model coord system
glab.dirVec.VICMODEL(4,:) = [-2 3 -1]; % Vicon coord system -> Model coord system

% 1c) Vicon / OpenSim Offset Marker

% ---
% This section sets marker to be used as the offset point to

% line up the model to the walking platform in OpenSim

% ---

glab.offsetMarker = 'SCM';

Script loadFPPlotting:

% =================================

% FORCE PLATE PLOTTING

% (Used by getKinetics.m)

% =================================

% 2a) Force Plate Labels

% ---

glab.name{1} = 'GRF';

glab.name{2} = 'CoP';

glab.name{3} = 'GRMo';
glab.name{4} = 'GRMx';

% Force Plate Directions

% (x dir+-, y dir+-, z dir+-)

% ---
glab.dir{1} = {'Fore', 'Aft'}; % X

glab.dir{2} = {'Vertical', ''}; % Y

glab.dir{3} = {'Lateral', 'Medial'}; % Z

% GRF Labels
% (label, units, directionSign+, directionSign-)

% ---

glab.S{1} = [{'GRF X (right)', 'N'}, glab.dir{1}(1), glab.dir{1}(2)];

glab.S{2} = [{'GRF Y (right)', 'N'}, glab.dir{2}(1), glab.dir{2}(2)];

glab.S{3} = [{'GRF Z (right)', 'N'}, glab.dir{3}(1), glab.dir{3}(2)];
glab.S{4} = [{'GRF X (left)', 'N'}, glab.dir{1}(1), glab.dir{1}(2)];

glab.S{5} = [{'GRF Y (left)', 'N'}, glab.dir{2}(1), glab.dir{2}(2)];

glab.S{6} = [{'GRF Z (left)', 'N'}, glab.dir{3}(1), glab.dir{3}(2)];

% CoP Labels

% (label, units, directionSign+, directionSign-)
% ---

glab.X{1} = [{'CoP X (right)', 'm'}, glab.dir{1}(1), glab.dir{1}(2)];

glab.X{2} = [{'CoP Y (right)', 'm'}, glab.dir{2}(1), glab.dir{2}(2)];

glab.X{3} = [{'CoP Z (right)', 'm'}, glab.dir{3}(1), glab.dir{3}(2)];

glab.X{4} = [{'CoP X (left)', 'm'}, glab.dir{1}(1), glab.dir{1}(2)];
glab.X{5} = [{'CoP Y (left)', 'm'}, glab.dir{2}(1), glab.dir{2}(2)];

glab.X{6} = [{'CoP Z (left)', 'm'}, glab.dir{3}(1), glab.dir{3}(2)];

% GRM Labels (Origin)

% (label, units, directionSign+, directionSign-)
% ---

glab.Mo{1} = [{'GRMo X (right)', 'Nm'}, glab.dir{1}(1), glab.dir{1}(2)];

glab.Mo{2} = [{'GRMo Y (right)', 'Nm'}, glab.dir{2}(1), glab.dir{2}(2)];

glab.Mo{3} = [{'GRMo Z (right)', 'Nm'}, glab.dir{3}(1), glab.dir{3}(2)];

glab.Mo{4} = [{'GRMo X (left)', 'Nm'}, glab.dir{1}(1), glab.dir{1}(2)];
glab.Mo{5} = [{'GRMo Y (left)', 'Nm'}, glab.dir{2}(1), glab.dir{2}(2)];

Page | 24

glab.Mo{6} = [{'GRMo Z (left)', 'Nm'}, glab.dir{3}(1), glab.dir{3}(2)];

% GRM Labels (CoP)

% (label, units, directionSign+, directionSign-)

% ---
glab.Mx{1} = [{'GRMx X (right)', 'Nm'}, glab.dir{1}(1), glab.dir{1}(2)];

glab.Mx{2} = [{'GRMx Y (right)', 'Nm'}, glab.dir{2}(1), glab.dir{2}(2)];

glab.Mx{3} = [{'GRMx Z (right)', 'Nm'}, glab.dir{3}(1), glab.dir{3}(2)];

glab.Mx{4} = [{'GRMx X (left)', 'Nm'}, glab.dir{1}(1), glab.dir{1}(2)];

glab.Mx{5} = [{'GRMx Y (left)', 'Nm'}, glab.dir{2}(1), glab.dir{2}(2)];
glab.Mx{6} = [{'GRMx Z (left)', 'Nm'}, glab.dir{3}(1), glab.dir{3}(2)];

Script loadEMGLabels:

% =================================

% EMG LABELS

% =================================

% (label, name)

% Used by getEMG.m to know which EMG analog channels to extract
% from the C3D file

% ---

% Full Biotel EMG set

% -------------------
glab.BiotelEMG{1} = {'VM' ,'Vastus Medialis'};

glab.BiotelEMG{2} = {'VL' ,'Vastus Lateralis'};

glab.BiotelEMG{3} = {'RF' ,'Rectus Femoris'};

glab.BiotelEMG{4} = {'GMAX' ,'Gluteus Maximus'};

glab.BiotelEMG{5} = {'GM' ,'Gluteus Medius'};
glab.BiotelEMG{6} = {'BF' ,'BF'};

glab.BiotelEMG{7} = {'SOL' ,'Soleus Lateral'};

glab.BiotelEMG{8} = {'TA' ,'Tibialis Anterior'};

% Test EMG set
% --------------------

glab.testEMG{1} = {'VM' ,'Vastus Medialis'};

glab.testEMG{2} = {'GM' ,'Gluteus Medius'};

glab.testEMG{3} = {'SOL' ,'Soleus'};

glab.testEMG{4} = {'TA' ,'Tibialis Anterior'};

Script loadMarkerLabels:

% =================================
% MARKERSET LABELS

% =================================

% Used by getMarkers.m to know which markers to extract

% from the C3D file

% ---

glab.markersStatic = {'RTPL', 'LTPL', 'SFS', 'TRX', 'STM', 'T1', 'RAM', 'LAM', 'RCIL', 'LCIL', 'RASIS', 'LASIS', 'RPSIS', 'RPSIS', 'SCM', 'RGT', 'LGT', 'RMFE', 'LMFE', 'RLFE',

'LLFE', 'RTT', 'LTT', 'RFH', 'LFH', 'RMEDMAL', 'LMEDMAL', 'RLATMAL', 'LLATMAL', 'RDIST1', 'LDIST1', 'RDIST5', 'LDIST5', 'RBIGTOE', 'LBIGTOE', 'RHEEL', 'LHEEL', 'RThT', 'RThB',

'RThR', 'RThF', 'LThT', 'LThB', 'LThR', 'LThF', 'RShT', 'RShB', 'RShR', 'RShF', 'LShT', 'LShB', 'LShR', 'LShF'};

glab.markersDynamic = {'RTPL', 'LTPL', 'SFS', 'TRX', 'STM', 'T1', 'RAM', 'LAM', 'RCIL', 'LCIL', 'RASIS', 'LASIS', 'RPSIS', 'RPSIS', 'SCM', 'RGT', 'LGT', 'RMFE', 'LMFE', 'RLFE',

'LLFE', 'RTT', 'LTT', 'RFH', 'LFH', 'RMEDMAL', 'LMEDMAL', 'RLATMAL', 'LLATMAL', 'RDIST1', 'LDIST1', 'RDIST5', 'LDIST5', 'RBIGTOE', 'LBIGTOE', 'RHEEL', 'LHEEL', 'RThT', 'RThB',

'RThR', 'RThF', 'LThT', 'LThB', 'LThR', 'LThF', 'RShT', 'RShB', 'RShR', 'RShF', 'LShT', 'LShB', 'LShR', 'LShF'};

Page | 25

%glab.markers = {'RTPL', 'LTPL', 'SFS', 'TRX', 'STM', 'T1', 'RAM', 'LAM', 'RCIL', 'LCIL', 'RASIS', 'LASIS', 'RPSIS', 'RPSIS', 'SCM', 'RGT', 'LGT', 'RMFE', 'LMFE', 'RLFE', 'LLFE',

'RTT', 'LTT', 'RFH', 'LFH', 'RMEDMAL', 'LMEDMAL', 'RLATMAL', 'LLATMAL', 'RDIST1', 'LDIST1', 'RDIST5', 'LDIST5', 'RBIGTOE', 'LBIGTOE', 'RHEEL', 'LHEEL', 'RThT', 'RThB',

'RThR', 'RThF', 'LThT', 'LThB', 'LThR', 'LThF', 'RShT', 'RShB', 'RShR', 'RShF', 'LShT', 'LShB', 'LShR', 'LShF'};

glab.markers(1).name = 'RTPL';
glab.markers(2).name = 'LTPL';

glab.markers(3).name = 'SFS';

glab.markers(4).name = 'TRX';

glab.markers(5).name = 'STM';

glab.markers(6).name = 'T1';
glab.markers(7).name = 'RAM';

glab.markers(8).name = 'LAM';

glab.markers(9).name = 'RCIL';

glab.markers(10).name = 'LCIL';

glab.markers(11).name = 'RASIS';

glab.markers(12).name = 'LASIS';
glab.markers(13).name = 'RPSIS';

glab.markers(14).name = 'LPSIS';

glab.markers(15).name = 'SCM';

glab.markers(16).name = 'RGT';

glab.markers(17).name = 'LGT';
glab.markers(18).name = 'RMFE';

glab.markers(19).name = 'LMFE';

glab.markers(20).name = 'RLFE';

glab.markers(21).name = 'LLFE';

glab.markers(22).name = 'RTT';
glab.markers(23).name = 'LTT';

glab.markers(24).name = 'RFH';

glab.markers(25).name = 'LFH';

glab.markers(26).name = 'RMEDMAL';

glab.markers(27).name = 'LMEDMAL';
glab.markers(28).name = 'RLATMAL';

glab.markers(29).name = 'LLATMAL';

glab.markers(30).name = 'RDIST1';

glab.markers(31).name = 'LDIST1';

glab.markers(32).name = 'RDIST5';
glab.markers(33).name = 'LDIST5';

glab.markers(34).name = 'RBIGTOE';

glab.markers(35).name = 'LBIGTOE';

glab.markers(36).name = 'RHEEL';

glab.markers(37).name = 'LHEEL';
glab.markers(38).name = 'RThT';

glab.markers(39).name = 'RThB';

glab.markers(40).name = 'RThR';

glab.markers(41).name = 'RThF';

glab.markers(42).name = 'LThT';

glab.markers(43).name = 'LThB';
glab.markers(44).name = 'LThR';

glab.markers(45).name = 'LThF';

glab.markers(46).name = 'RShT';

glab.markers(47).name = 'RShB';

glab.markers(48).name = 'RShR';
glab.markers(49).name = 'RShF';

glab.markers(50).name = 'LShT';

glab.markers(51).name = 'LShB';

glab.markers(52).name = 'LShR';

glab.markers(53).name = 'LShF';

Page | 26

Appendix B

The file setup.xml for the motion Gait_0004_label:

<Setup xml_tb_version="3.1">

 <Scale>
 <use>false</use>

 <motionFile>REF_07_FP2_0001</motionFile>

 <model>Delp2392_3DAHName</model>

 <ScaleTask name="RAM">

 <weigth>5</weigth>
 </ScaleTask>

 <ScaleTask name="LAM">

 <weigth>5</weigth>

 </ScaleTask>

 <ScaleTask name="RASIS">
 <weigth>150</weigth>

 </ScaleTask>

 […]
 <ScaleTask name="LBIGTOE">

 <weigth>50</weigth>

 </ScaleTask>

 </Scale>

 <IK>
 <use>false</use>

 <IKTask name="RAM">

 <weigth>10</weigth>

 </IKTask>

 <IKTask name="LAM">
 <weigth>10</weigth>

 </IKTask>

 […]
 <IKTask name="LDIST5">
 <weigth>10</weigth>

 </IKTask>

 <IKTask name="LBIGTOE">

 <weigth>20</weigth>

 </IKTask>
 </IK>

 <RRA>

 <use>false</use>

 <filter_frequency>6</filter_frequency>

 <Actuators name="hip_flexion_r">
 <optimal_Force>300.0</optimal_Force>

 </Actuators>

 <Actuators name="hip_adduction_r">

 <optimal_Force>200.0</optimal_Force>

 </Actuators>

 […]
 <Actuators name="lumbar_rotation">

 <optimal_Force>200.0</optimal_Force>
 </Actuators>

 <Task>

 <rdCMC_Joint name="pelvis_tz">

 <kp>100.0</kp>

 <kv>20.0</kv>
 <weigth>5.0e0</weigth>

 </rdCMC_Joint>

 <rdCMC_Joint name="pelvis_tx">

 <kp>100.0</kp>

 <kv>20.0</kv>
 <weigth>5.0e0</weigth>

Page | 27

 </rdCMC_Joint>

 […]
 <rdCMC_Joint name="lumbar_rotation">
 <kp>100.0</kp>

 <kv>20.0</kv>

 <weigth>1.0e1</weigth>

 </rdCMC_Joint>

 </Task>
 </RRA>

 <CMC>

 <use>false</use>

 <filter_frequency>6</filter_frequency>

 <Actuators name="hip_flexion_r">
 <optimal_Force>1.0</optimal_Force>

 </Actuators>

 <Actuators name="hip_adduction_r">

 <optimal_Force>1.0</optimal_Force>

 </Actuators>

 […]
 <Actuators name="lumbar_rotation">

 <optimal_Force>1.0</optimal_Force>

 </Actuators>
 <Task>

 <rdCMC_Joint name="pelvis_tz">

 <kp>100.0</kp>

 <kv>20.0</kv>

 </rdCMC_Joint>
 <rdCMC_Joint name="pelvis_tx">

 <kp>100.0</kp>

 <kv>20.0</kv>

 </rdCMC_Joint>

 […]
 <rdCMC_Joint name="lumbar_rotation">

 <kp>100.0</kp>

 <kv>20.0</kv>
 </rdCMC_Joint>

 </Task>

 </CMC>

</Setup>

Page | 28

APPENDIX C

Experimenting with user dependent content of the IK

After the pipeline was implemented and tested successfully, it was used to get the muscle activation
of the motion Gait_0004. The user depended content for this run can be found in Appendix B. The
scaling and the IK seemed to have run successfully with it, but the steps RRA and CMC seemed to fail.
The RRA and the CMC uses both the resulting file of the IK. Therefore, the first thing to look at was
the resulting motion of the IK using the interface of OpenSim. The interface of OpenSim allows the
user to load a model (in this case the model that results from the scaling) and motions, like the
motions created by the IK, and displays it. As you can see in figure 7, the hip of the skeleton model is
twisted.

Figure 7: resulting motion of the IK twisted

The explanation for this is that the weight user dependent content used in the IK is not correct for
the markers at the hip. Therefore, it was experimented with the user depended content with the aim
of removing the twist in the hips.

In the experiment, the weights of markers were changed, then the pipeline ran again with these
changed weights and look was taken at the resulting IK motions, to see if it changed and the twist
disappeared. Because only the hip is twisted, it is reasonable to only experiment with the weight of
the markers around the hip. Therefore, only the weight of the markers RASIS, LASIS, SCM, RCIL and
LCIL changed during these experiments.

In the first experiment, the weights were raised to 30. The resulting IK motion did not look any
different than the one before. Therefore, the change in weights did not change the IK enough.
Next, the weights of the other markers were lowered to see if this makes any difference. The weight
of 10 was changed to a weight of 1 and the weight of 20 was changed to a weight of 2 of all markers
(except of the markers around the hips, which remained 30). Running the pipeline with these
changes also did not seem to effect the twist at all as it still looks the same.

The thought that rose was that the raise of the weights maybe was not enough. Therefore, the
weights of the markers around the hip were raised to 1000. The weights of the other markers

Page | 29

remained like they were in the experiment before (around 1 and 2). You can find all the weights with
marker weight to which it belongs in table 3.

Table 3: Marker names and their weight for the IK

Marker name Weight

RAM 1

LAM 1

STM 1

RASIS 1000

LASIS 1000

SCM 1000

LPSIS 1000

RCIL 1000

LCIL 1000

RLFE 1

RMFE 1

RGT 1

RThT 2

RThB 2

RThF 2

RThR 2

RLATMAL 1

RMEDMAL 1

RTT 5

RFH 5

RShT 2

RShB 2

RShF 2

RShR 2

RHEEL 2

RDIST1 1

RDIST5 1

RBIGTOE 2

LLFE 1

Page | 30

LMFE 1

LGT 15

LThT 2

LThB 2

LThF 2

LThR 2

LLATMAL 1

LMEDMAL 1

LTT 5

LFH 5

LShT 2

LShB 2

LShF 2

LShR 2

LHEEL 2

LDIST1 1

LDIST5 1

LBIGTOE 2

After running the pipeline with this IK user depended content for the pipeline, the IK motion finally
changed: the rotation of the hip changed. As you can see in figure 8 the twist is totally gone.

Figure 8: IK motion of the last experiment.

